تعداد نشریات | 13 |
تعداد شمارهها | 151 |
تعداد مقالات | 1,507 |
تعداد مشاهده مقاله | 2,324,855 |
تعداد دریافت فایل اصل مقاله | 1,951,489 |
برآورد خصوصیات مختلف خاک با استفاده از دادههای سریع و ارزان حسگر رنگ | ||
تحقیقات کاربردی خاک | ||
دوره 11، شماره 2، شهریور 1402، صفحه 28-45 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/asr.2023.121363 | ||
نویسندگان | ||
فاطمه چشم براه1؛ علی اصغر ذوالفقاری* 2؛ روح الله تقی زاده مهرجردی3 | ||
1گروه بیابانزدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران | ||
2دانشیار گروه بیابان زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران. | ||
3گروه مهندسی طبیعت، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران و فوق دکترا در گروه علوم زمین، دانشگاه توبینگن، آلمان. | ||
چکیده | ||
معمولاً رنگ خاک با بسیاری از خصوصیات فیزیک و شیمیایی در ارتباط بوده و اندازهگیری آن ساده، سریع و کم هزینه است. حسگر رنگ نیکس پرو (NixTMpro) از جمله وسایلی است که میتواند رنگ خاک را با استفاده از سیستمهای مختلف با دقت زیادی تعیین کند. این حسگر در مقایسه با روش مرسوم دفترچه مانسل برای تعیین رنگ خاک، نسبت به شرایط محیطی و ذهنی کاربر حساسیت کمتری دارد و استفاده از آن بسیار آسان است. بنابراین، در این مطالعه از حسگر رنگ نیکس پرو برای برآورد سریع و ارزان خصوصیات مختلف خاک استفاده شد. به همین منظور، 150 نمونه خاک از منطقه مطالعاتی نیمهخشک استان قزوین جمعآوری و مقادیر مربوط به هر ویژگی خاک در آزمایشگاه اندازهگیری شد. سپس با استفاده از این حسگر رنگ، طیفهای مربوط به هر سیستم رنگ برای هر نمونه خاک ثبت شدند. برای این منظور دو روش مورد استفاده قرار گرفت. در روش اول با بررسی همبستگی بین متغیرهای سیستم رنگ سعی شد یک سیستم رنگ استاندارد که دارای بالاترین ضریب همبستگی با همه ویژگیهای خاک است معرفی شود. در روش دوم همه متغیرهای سیستمهای مختلف رنگ با روش حذف ویژگی بازگشتی مورد بررسی قرار گرفت، که این روش با انتخاب مهمترین ویژگیها، ویژگیهایی که دارای بالاترین دقت هستند، انتخاب میکند. با توجه به نتایج هر دو روش و به جهت معرفی یک سیستم رنگ استاندارد، در این مطالعه از سیستم رنگ CIEL*a*b برای برآورد خصوصیات خاک استفاده شد، زیرا این سیستم نسبت به سیستمهای دیگر رنگ همبستگی بیشتری را با خصوصیات مختلف خاک نشان داد. سپس با استفاده از الگوریتم جنگل تصادفی (Random Forest) مقادیر مربوط به هر ویژگی خاک برآورد شد. خصوصیات خاک شامل مقادیر شن، سیلت، رس، میزان شوری، مقدار کربنات کلسیم (CaCO3)، مقدار ماده آلی و جرم مخصوص ظاهری خاک بودند. با توجه به نتایج حاصل از برآورد مدل جنگل تصادفی، میزان رﯾﺸﻪ دوم ﻣﯿﺎﻧﮕﯿﻦ ﻣﺮﺑﻌﺎت ﺧﻄﺎ (RMSE)، میانگین خطا (ME)ارزیابی فاصله چارکی (PRIQ) و مقدار ضریب همبستگی (r) برای هر ویژگی خاک تعیین شد. برای ذرات شن، سیلت و رس مقدار RMSE به ترتیب برابر با 07/10، 28/6، 26/7 درصد و میزان ضریب همبستگی به ترتیب برابر با 70/0، 49/0، 77/0 بود. میزان آماره PRIQ برای ذرات شن (09/2)، رس (37/2) و کربنات کلسیم (78/1) در سطح مناسب و قابلقبول میباشد. مقادیر RMSE برای ماده آلی، کربنات کلسیم و جرم مخصوص ظاهری به ترتیب 57/0، 25/2، 11/0 درصد و میزان ضریب همبستگی به ترتیب 55/0، 78/0، 70/0 بود. با توجه به این نتایج میتوان گفت که طیفهای حاصل از حسگر رنگ نیکس پرو میتواند برای پیشبینی سریع خصوصیات خاک مفید باشد. | ||
کلیدواژهها | ||
رنگ خاک؛ حسگر رنگ NixTM Pro؛ سیستم طیفی؛ مدل جنگل تصادفی | ||
مراجع | ||
Aitkenhead M.J., Coull M., Towers W., Hudson G. and Black, H.I.J. 2013. Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma, 200: 99-107.
Anderson, S. 2005. Soils: Genesis and Geomorphology. Cambridge University Press, Cambridge, 13 817p.
Barthès B.G., Kouakoua E., Clairotte M., Lallemand J., Chapuis-Lardy L., Rabenarivo M. and Roussel, S. 2019. Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen. Geoderma 338: 422-429.
Baumgardner M.F., Silva L.F., Biehl L.L., Stoner Baumgardner M.F., Silva L.F., Biehl L.L. and Stoner E.R. 1986. Reflectance properties of soils. Advances in agronomy, 38: 1-44.
Bellon-Maurel V., Fernandez-Ahumada E., Palagos B., Roger J.M. and McBratney A. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9): 1073-1081.
Dos Santos J.C.B., Le Pera E., de Souza Júnior V.S., de Oliveira C.S., Juilleret J., Corrêa M.M. and de Azevedo A.C. 2018. Porosity and genesis of clay in gneiss saprolites: the relevance of saprolithology to whole regolith pedology. Geoderma, 319: 1-13.
Gee G.W. and Or D. 2002. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, Soil Science Society of America Book Series, pp. 255-293
Hastie T., Tibshirani R., Friedman J.H. and Friedman, J.H. 2009. The elements of statistical learning: data mining inference, and prediction. New York, springer, 758p.
Ibáñez-Asensio S., Marques-Mateu A., Moreno-Ramón H. and Balasch, S. 2013. Statistical relationships between soil colour and soil attributes in semiarid areas. Biosystems Engineering, 116(2): 120-129.
Jha G., Sihi D., Dari B., Kaur H., Nocco M.A., Ulery A. and Lombard K. 2021. Rapid and inexpensive assessment of soil total iron using Nix Pro color sensor. Agricultural & Environmental Letters, 6(3): e20050.
Kirillova N.P., Sileva T.M., Ul’yanova T.Y., Smirnova I.E., Ul’yanova A.S. and Burova E.K. 2018. Color diagnostics of soil horizons (by the example of soils from Moscow region). Eurasian Soil Science, 51(11): 1348-1356.
Kirillova N.P., Vodyanitskii Y.N. and Sileva, T.M. 2015. Conversion of soil color parameters from the Munsell system to the CIE-L* a* b* system. Eurasian soil science 48(5): 468-475.
Kirillova N.P., Grauer-Gray J., Hartemink A.E., Sileova T.M., Artemyeva Z.S. and Burova E.K. 2018. New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture 155: 378-385.
Kuhn M. and Johnson K. 2013. Applied predictive modeling. New York, Springer, 600p.
Levin N., Ben‐Dor E. and Singer, A. 2005. A digital camera as a tool to measure colour indices and related properties of sandy soils in semi‐arid environments. International Journal of Remote Sensing, 26(24): 5475-5492.
Marqués-Mateu Á., Moreno-Ramón H., Balasch S. and Ibáñez-Asensio, S. 2018. Quantifying the uncertainty of soil colour measurements with Munsell charts using a modified attribute agreement analysis. Catena, 171: 44-53.
Mikhailova E.A., Stiglitz R.Y., Post C.J., Schlautman M.A., Sharp J.L. and Gerard P.D. 2017. Predicting soil organic carbon and total nitrogen in the Russian Chernozem from depth and wireless color sensor measurements. Eurasian Soil Science 50(12): 1414-1419.
Mikhailova E., Stiglitz R., Post C., Schlautman M.A., Sharp J. and Gerard, P. 2017. Developing Predictive Soil Organic C and N Models for Glaciated Soils Using Quantitative Color Sensor Measurements. ASA, CSSA and SSSA International Annual (2017), (Abs.)
Minasny B. and McBratney, A.B. 2008. Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemometrics and intelligent laboratory systems 94(1): 72-79.
Mouazen A.M., Karoui R., Deckers J., De Baerdemaeker J. and Ramon H. 2007. Potential of visible and near-infrared spectroscopy to derive colour groups utilising the Munsell soil colour charts. Biosystems Engineering, 97(2): 131-143.
Mukhopadhyay S. and Chakraborty S. 2020. Use of diffuse reflectance spectroscopy and Nix pro color sensor in combination for rapid prediction of soil organic carbon. Computers and Electronics in Agriculture, 176: 105630.
Nasrollahi M., Zolfaghari A.A. and Yazdani M.R. 2021. Spatial and temporal properties of reference evapotranspiration and its related climatic parameters in the main agricultural regions of Iran. Pure and Applied Geophysics, 178(10): 4159-4179.
Niazi N.K., Singh B. and Minasny B. 2015. Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. International Journal of Environmental Science and Technology, 12(6): 1965-1974.
Raeesi M., Zolfaghari A.A., Yazdani M.R., Gorji M. and Sabetizade M. 2019. Prediction of soil organic matter using an inexpensive colour sensor in arid and semiarid areas of Iran. Soil Research, 57(3):276-286.
Resende M., Curi N., Rezende S.D., Corrêa G.F. and Ker J.C. 2014. Pedologia base para distinção de ambientes. rev. ampl. Lavras: Editora UFLA
Rezende É.A., 2021. Estudo da influência da Zona de Cisalhamento de Três Corações na ocorrência de voçorocamentos. Revista de Geografia-PPGEO-UFJF, 11(1): 120-135.
Sabetizade M., Gorji M., Roudier P., Zolfaghari A.A. and Keshavarzi, A. 2021. Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region. Catena, 196: 104844.
Staff S.S. 2014. Keys to soil taxonomy. 13th Ed. United States Department of Agriculture: Washington, DC, USA, 436p.
Stiglitz R., Mikhailova E., Post C., Schlautman M. and Sharp J. 2016. Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121: 141-148.
Stiglitz R., Mikhailova E., Post C., Schlautman M. and Sharp J. 2017. Using an inexpensive color sensor for rapid assessment of soil organic carbon. Geoderma, 286: 98-103.
Stiglitz R.Y., Mikhailova E.A., Sharp J.L., Post C.J., Schlautman M.A., Gerard P.D. and Cope M.P. 2018. Predicting soil organic carbon and total nitrogen at the farm scale using quantitative color sensor measurements. Agronomy, 8(10): 212.
Swetha R.K. and Chakraborty, S. 2021. Combination of soil texture with Nix color sensor can improve soil organic carbon prediction. Geoderma, 382: 114775.
Thompson J.A., Pollio A.R. and Turk, P.J. 2013. Comparison of Munsell soil color charts and the GLOBE soil color book. Soil Science Society of America Journal, 77(6): 2089-2093.
Walkley A. and Black I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1): 29-38.
Wilding L.P. 1985. Spatial variability: its documentation, accomodation and implication to soil surveys. In Soil spatial variability, Las Vegas NV, 30 November-1 December, 1984: 166-194
Willmott C.J. and Matsuura K. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1): 79-82. | ||
آمار تعداد مشاهده مقاله: 824 تعداد دریافت فایل اصل مقاله: 538 |