تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,478 |
تعداد مشاهده مقاله | 2,257,157 |
تعداد دریافت فایل اصل مقاله | 1,887,491 |
بررسی مقدار جذب نیترات از چهار کود نیتروژنه و شبیهسازی حرکت آن در خاک لومی شنی با نرمافزار هایدروس یک بعدی | ||
تحقیقات کاربردی خاک | ||
مقاله 5، دوره 3، شماره 2، اسفند 1394، صفحه 55-71 اصل مقاله (1015.42 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مریم بیات ورکشی* 1؛ حمید زارع ابیانه2؛ شهریار مهدوی3 | ||
1استادیار مهندسی منابع آب دانشکده کشاورزی دانشگاه ملایر | ||
2دانشیار گروه مهندسی آب دانشکده کشاورزی دانشگاه بوعلی سینا | ||
3استادیار گروه خاک دانشکده کشاورزی دانشگاه ملایر | ||
چکیده | ||
در این تحقیق، آزمایشی بهصورتفاکتوریلوبرپایه طرحکاملاًتصادفیدر یک خاک لومی شنی تحت کشت سیبزمینی با نرمافزار هایدروس با دو فاکتور نوع کود نیتروژن در 4 سطح (اوره، نانوکیلیت نیتروژن، نانوکیلیت نیتروژن گوگرددار و اوره با پوشش گوگردی) و مقدار نیتروژن در 3 سطح (46، 92 و 138 کیلوگرم نیتروژن در هکتار) صورت گرفت. نتایج برازش مدل فروندلیچ بر دادههای نیترات خاک نشان داد که این مدل در هر سه سطح کود مصرفی با کمترین مجموع مربعات (SSQ)، دادههای تیمارهای نانوکیلیت نیتروژن و نانوکیلیت نیتروژن گوگرددار را توصیف مینماید. بیشترین مقدار ضریب Kd فروندلیچ در سطح 46 کیلوگرم نیتروژن به کود نانوکیلیت نیتروژن معادل 14/0، در سطح 92 کیلوگرم معادل 17/0 به کود نانوکیلیت نیتروژن و در سطح 138 کیلوگرم نیتروژن برابر 19/0 بهدو کود نانوکیلیت نیتروژن و نانوکیلیت نیتروژن گوگرددار تعلق داشت. ضمن آنکه افزایش مقدار کود مصرفی در همه تیمارها منجر به افزایش ظرفیت جذب نیترات خاک شد. نتایج شبیهسازی حرکت نیترات نشان داد که کمترین مقدار خطا (07/0= NRMSE) و بیشترین ضریب تبیین (999/0 = R2)، بهسطح 138 کیلوگرم نیتروژن در هکتار مربوط به تیمار کود نانوکیلیت نیتروژن گوگرددار بود. بالاترین NRMSEو کمترین R2در شبیهسازی حرکت نیترات هر سطح تیمارهای کودی به تیمار کود اوره تعلق داشت. در مجموع نتایج نشان داد استفاده از نانو کودهای نیتروژن باعث شستشوی کمتر نیترات و افزایش نگهداشت آن در خاک میشود. | ||
کلیدواژهها | ||
اوره؛ اوره با پوشش گوگردی؛ فروندلیچ؛ نانوکیلیت نیتروژن | ||
مراجع | ||
Abbasi, F., Shooshtari, M.M., and Feyen, J. (2003). Evaluation of the various surfaceirrigation numerical simulation models. Journal of Irrigation and Drainage Engineering, 129 (4), 208-213.
Abedi-Koupai, J., Eslamian, S.S., and Asadkazemi, J. (2008). Enhancing the Available Water Content in Unsaturated Soil Zone using Hydrogel, to Improve Plant Growth Indices. Ecohyrology and Hydrobiology, Poland, 8 (1), 3-11.
Amani, F., Reisi, F., Pirvali Bieranvand, N., and Mousavi, A. (2008). Effect of Biological Nitrogen Fixation and Plant Growth in two Soybean Cultivars using 15N Isotopic Dilution Technique. Journal of Agriculture, 10 (1), 9-20.
Chotpantarat, S., Limpakanwech, C., Siriwong, W., Siripattanakul, S., and Sutthirat, C. (2011). Effect of soil water characteristic on simulation of nitrat sustainable. Environment Research, 21, 187-193.
Crevoisier, D., Popova, Z., Mailhol, J.C., and Ruelle, P. (2008). Assessment and simulation of water and nitrogen transfer under furrow irrigation. Journal of Agricultural Water Management, 95 (4), 354-366.
Cui, H., Sun, C., Liu, Q., Jiang, J., and Gu, W. (2006). Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. Pp. 1-6. Institute of Environment and Sustainable Development in Agriculture, ChineseAcademy of Agricultural Sciences, Beijing. China.
Feddes, R.A., Kowalik, P.J., and Zaradny, H. (1978). Simulation of field water use and crop yield. Pudoc, Wageningen, 189p.
Fuentes, R., Caceres, L., Molina, M., Iravena, S., Cazanga, M., Calder, R., and Escudey, M. (2008). Use of Hydrus-1D to describe the transport of nitrate in a volcanic soil affected by sewage sludge, sewage sludge ash, and pinus radiata ash amendments. 5th International Symposium ISMOM. November 24 – 28, Chile.
Gao, S., Yang, G., Li, Z., Jia, X., and Chen, Y. (2012). Bioinspired synthesis of hierarchically micro/nanostructured CuI tetrahedron and its potential application as adsorbent for Cd (II) with high removal capacity. Journal of Hazardous Materials, 211– 212, 55– 61.
Garg, K.K., Das, B.S., Safeeq, M., and Bhadoria, P.B.S. (2009). Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Journal of Agricultural Water Management, 96 (12), 1705-1714.
Heatwole, K.K., and McCray, J.E. (2007). Modeling potential vadose-zone transport of nitrogen from onsite wastewater systems at the development scale. Journal of Contaminant Hydrology, 91 (1-2), 184-201.
Jafarzade, R., Jami Moeini, M., and Hokmabadi, M. (2013). Response of yield and yield components in wheat to soil and foliar application of nano potassium fertilizer. Journal of Crop Production Research, 5 (2), 189-198, (In Persian).
Jellali, S., Diamantopoulos, E., Kallali, H., Bennaceur, S., Anane, M., and Jedidi, N. (2010). Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes. Journal of Environmental Management, 91 (4), 897-905.
Kandil, E.A., Fawzi, M.I., and Shahin, M.F. (2010). The effect of som Release Nitrogen Fertilizers on Growth, Nutrient Status and Fruiting of Mit Ghamr peach trees. Journal of American Science, 6(12), 195-201.
Liu, X., Feng, Z., Zhang, S., Zhang, J., Xiao, Q., and Wang, Y. (2006). Preparation and testing of cementing nano-subnano composites of slowor controlled release of fertilizers. Scientia Agricultura Sinica, 39, 1598-1604.
Moazed, H. (2008). Ammonium Ion removal from wastewater by a natural resin. Journal of Environmental Science and Technology, 1(1), 11-18.
Moradzadeh, M., Moazed, H., and Sayyad, G. (2013). Simulation of Nitrate Ion Leaching in a Sandy Loam Soil Treated with Zeolite Using Hydrus-1D Model. Water and Soil Science, 23 (1), 95-107.
Mulvaney, R.L. (1996). Nitrogen-inorganic forms. In: Sparks DL (ed). Methods of Soil Analysis—Part 3. Chemical Methods—SSSA Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, 1123–1184.
Naghavi, H., Hosseininia, M., Karimi Googhari, S.H., and Irandost, M. (2012). Capability of HYDRUS-2D Simulation Model for Simulating Wetting Pattern in Soil under Subsurface Drip Irrigation Systems. Science and Tchnology of Agriculture and Natural Resources, 16(61), 59-69, (In Persian).
Öztürk, N., and Bektaş, T.E. (2004). Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112 (1), 155-62.
Parvizi, K., Souri, J., and Mahmoodi, R. (2010). Removal of Strontium (II) from aqueous solution by adsorption using Xerogel synthesized from TEOS: Batch and Fixed-bed Study. Journal of Applied Chemistry, 25 (1), 82-93.
Rahmani, A., Zavvar Mousavi, H., and Fazli, M. (2010). Effect of nanostructure alumina on adsorption of heavy metals. Desalination, 253(1-3), 94– 100.
Rostamzadeh, A., Golchin, A., and Mohammadi, J. (2013). The Effects of Different Sources and Rates of Nitrogen on Nitrogen Use Efficiency and Cucumber Yield. Water and Soil Science, 23 (1), 15-26, (In Persian).
Salamati, N., Delbari, M., Abbasi, F., and Sheini Dashtgol, A. (2016). Simulation of Water and Nitrate Transport in Soil Using HYDRUS-1D Model in Furrow Irrigation of Sugarcane. Science and Tchnology of Agriculture and Natural Resource, 19 (74), 179-191.
Sharifi, M., Zebarth, B.J., Hajabbasi, M.A., and Kalbasi, M. (2005). Dry matter and nitrogen accumulation and root morphological characteristics of two clonal selections of Russet Norkotah potato as affected by nitrogen fertilization. Journal of Plant Nutrition, 28, 2243-2253.
Shamsoddin, M., Nasiri, M., Fazli, M., and Haghbin, K. (2015). Removal of Strontium (II) from aqueous solution by adsorption using Xerogel synthesized from TEOS: Batch and Fixed-bed Study. Journal of Applied Chemistry, 9 (33), 35-50.
Silva, R.G., Holub, S.M., Jorgensen, E.E., and Ashanuzzaman, A.N.M. (2005). Indicators of nitrate leaching loss under different land use of clayey and sandy soils in southeastern Oklahoma. Agriculture, Ecosystems and Environment, 109 (1), 346-359.
Simunek, J., Huang, K., Senjna, M., and Van Genuchten, M. (1998). The Hydrus-1Dsoftware pakage for simulating the one- dimensional movement of water, heat and multiple solutes in variability- saturated media. Version 1.01GWMC- TPS-70. International Ground Water Modeling Center, ColoradoSchool of Mines, Golden, Colorado, 162.
Zareabyaneh, H., and Bayat Varkeshi, M. (2014). Effect of nano-chelate nitrogen and urea fertilizers on nitrate leaching and it's distribution in plant and soil profile under Potato cultivation. Water and Soil Science, 25 (1), 25-40.
Zare Abyaneh, H., and Bayat Varkeshi, M. (2015). Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environmental Earth Sciences. Environmental Earth Sciences, 74, 3385-3393.
Zare Abyaneh, H., Farrokhi, E., Azhdari, K., and Vazifeh Doust, M. (2013). Assessment of HYDRUD-1D model in simulation of soil moisture and nitrogen in onion farm under drip irrigation. Journal of Water and Soil Conservation, 20(5), 1-19, (In Persian).
Ziaeyan, A.H., and Keshavarz, P. (2011). Increasing Nitrogen Use Efficiency in Potato by Application of Slow Release N-Fertilizers. Iranian Journal of Soil Research, 24 (2), 107-115, (In Persian).
Yazdan Douste Hamedani, M. (2003). A Study of the Effect of Nitrogen Rates on Yield, Yield Components and Nitrate Accumulation in Potato Varieties. Iranian Journal of Agriculture Science, 34 (4), 977-985, (In Persian). | ||
آمار تعداد مشاهده مقاله: 2,677 تعداد دریافت فایل اصل مقاله: 1,693 |