تعداد نشریات | 13 |
تعداد شمارهها | 145 |
تعداد مقالات | 1,452 |
تعداد مشاهده مقاله | 2,191,245 |
تعداد دریافت فایل اصل مقاله | 1,825,353 |
تخمین سطح تنش رطوبتی خاک با استفاده از مدل HYRDUS2D و سیستم استنتاج عصبی- فازی | ||
تحقیقات کاربردی خاک | ||
مقاله 5، دوره 3، شماره 1، تیر 1394، صفحه 53-64 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
فاطمه کاراندیش1؛ پرویز حقیقت جو2 | ||
11- استادیار گروه مهندسی آب، دانشکده ی آب و خاک، دانشگاه زابل (مکاتبه کننده) | ||
2استادیار گروه مهندسی آب، دانشکدهی آب و خاک، دانشگاه زابل | ||
چکیده | ||
در این پژوهش، بهمنظور تعیین طول دورهی تنش در طول فصل کشت، قابلیت مدلهای HYDRUS2D و ANFIS در شبیهسازی روند تغییرات زمانی رطوبت خاک و اجزای بیلان آب تحت آبیاری کامل و کمآبیاری معمولی در دو سطح 75 (DI75) و 55 درصد (DI55) در یک مزرعهی ذرت با یکدیگر مقایسه شدند. بدین منظور، طی دو فصل زراعی دادههای رطوبت خاک با استفاده از رطوبتسنج TRIME-FM برای واسنجی و صحتیابی مدل HYDRUS2D برداشت شد. همچنین، شبیهسازی تغییرات زمانی رطوبت خاک با مدل ANFIS با توابع عضویت مختلف و با متغیرهای مستقل روز بعد از کاشت، ضریب درجه-روز، سطح تنش و عمق آب آّبیاری انجام شد. مقایسهی معیارهای ارزیابیِ جذر میانگین مربعات خطا (mm 2-21/8)، خطای انحراف (mm 6/11-7-10) و ضریب کارآیی مدل (1-63/0) در شبیهسازیِ طول دورهی تنش، رطوبت و اجزای بیلان خاک، امکان جایگزینی مدل ANFIS با مدل پیچیدهی HYDRUS2D را در شرایط معرفی متغیرهای مستقل مناسب را نشان میدهد. هچنین، علیرغم اعمال زود هنگامتر تیمارها در فصل دوم، عدم تغییر بازهی تنش رطوبتی در تیمار DI75 در دو فصل (از روز 82ام تا انتهای فصل کاشت)، امکان کاهش سطح آب مصرفی و یا تغییر زمان اعمال کمآبیاری را نشان میدهد. بر اساس نتایج این پژوهش، مدل ANFIS میتواند پاسخگوی نیاز در این راستا باشد. | ||
کلیدواژهها | ||
اجزای بیلان آب؛ رطوبت خاک؛ کمآبیاری؛ ضریب درجه-روز رشد؛ ANFIS | ||
مراجع | ||
References
Ajdary, K., Singh, D.K., Singh, A.K., Khanna, M. (2007). Modeling of nitrogen leaching from experimental onion field under drip fertigation. Agric. Water Manage. 89, 15–28.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
Birchak, J. R., Gardner, C. G., Hipp, J. E., & Victor, J. M. (1974). High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE, 62(1), 93-98.
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.
Celia, M.A., Bouloutas, E.T., Zarba, R.L. 1990. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496.
Cote, C. M., Bristow, K. L., Charlesworth, P. B., Cook, F. J., & Thorburn, P. J. (2003). Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrigation Science, 22(3-4), 143-156.
Dasberg, S., & Hopmans, J. W. (1992). Time domain reflectometry calibration for uniformly and nonuniformly wetted sandy and clayey loam soils. Soil Science Society of America Journal, 56(5), 1341-1345.
Malamos, N. (2007). Estimation of width and depth of the wetted soil volume under a surface emitter, considering root water-uptake and evaporation. Water resources management, 21(8), 1325-1340.
FAO. (2010). AQUACROP Annexes: Reference Manual, 50p.
Gardenas, A. I., Hopmans, J. W., Hanson, B. R., & Šimůnek, J. (2005). Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural water management, 74(3), 219-242.
GHORBANI, D. S., HOMAEI, M., & Mahdian, M. H. (2009). Estimating soil water infiltration parameters using Artificial Neural Networks.
Gilley, J. R., Watts, D. G., & Sullivan, C. Y. (1980). Management of irrigation agriculture with a limited water and energy supply. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, 168.
Hupet, F., Lambot, S., Javaux, M., & Vanclooster, M. (2002). On the identification of macroscopic root water uptake parameters from soil water content observations. Water resources research, 38(12).
Besharat, S., Khanmohammadi, N., Rezaie, H., & Behmanesh, J. (2012). Evaluation of soil water profile simulations in drip irrigation based on soil hydraulic properties with experimental observations. In Soil and Water Engineering. International Conference of Agricultural Engineering-CIGR-AgEng 2012: agriculture and engineering for a healthier life, Valencia, Spain, 8-12 July 2012 (pp. C-1035). CIGR-EurAgEng.
Karandish, F., Mirlatifi, SM., Shahnazari, A., Abbasi, F., Gheysari, M. (2012). Effect of partial root-zone drying (PRD) and deficit irrigation on Nitrogen uptake and leaching in maize. Journal of Water and Irrigation Management, 2(2), 85-98.
Karandish, F., Mirlatifi, SM., Shahnazari, A., Abbasi, F., Gheysari, M. (2013). Investigating the influence of partial root-zone drying and defecit irrigation on water productivity, maize yield and yield components. Journal of Water and Soil Researches, 44(1), 33-44.
Karandish F. 2016. Improved soil-plant water dynamics and economic water use efficiency in a maize field under locally water stress. Arch Agronomy Soil Science. 1–13.
Klocke, N. L., Schneekloth, J. P., Melvin, S. R., Clark, R. T., & Payero, J. O. (2004). Field scale limited irrigation scenarios for water policy strategies. Applied engineering in agriculture, 20(5), 623.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Parchami-Araghi, F., Mirlatifi, S. M., Dashtaki, S. G., & Mahdian, M. H. (2013). Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. Journal of Hydrology, 481, 35-47.
Payero, J. O., Melvin, S. R., Irmak, S., & Tarkalson, D. (2006). Yield response of corn to deficit irrigation in a semiarid climate. Agricultural Water Management, 84(1), 101-112.
Robins, J. S., & Domingo, C. E. (1953). Some effects of severe soil moisture deficits at specific growth stages in corn. Agronomy Journal, 45(12), 618-621.
Schneekloth JP, Klocke NL, Hergert GW, Martin DL, Clark RT .1991. Crop rotations with full and limited irrigation and dryland management. Trans. ASAE 34: 2372-2380.
Simunek, J., Sejna, M., van Genuchten, M.Th. (1999). The HYDRUS-2D Software Package for Simulating Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variable Saturated Media. Version 2.0. IGWMCTPS-53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, pp. 1–251.
Stone, L. R. (2003, February). Crop water use requirements and water use efficiencies. In Proceedings of the 15th annual Central Plains irrigation conference and exposition. February (pp. 4-5).
Tafteh, A., Sepaskhah, A.R. 2012. Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. Agricultural Water Management, 113: 19– 29.
Vrugt, J. A., Hopmans, J. W., & Simunek, J. (2001). Calibration of a two-dimensional root water uptake model. Soil Science Society of America Journal, 65(4), 1027-1037.
Wang, Z., Li, J., & Li, Y. (2014). Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain. Agricultural Water Management, 142, 19-28. | ||
آمار تعداد مشاهده مقاله: 2,131 تعداد دریافت فایل اصل مقاله: 1,638 |