تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,264,537 |
تعداد دریافت فایل اصل مقاله | 1,896,447 |
تأثیر قارچ مایکوریزا بر ویژگیهای آنتیاکسیدانی و جذب عناصر غذایی نهالهای پالونیا فورتونی (Paulownia fortunei) تحت تنش خشکی | ||
پژوهش و توسعه جنگل | ||
دوره 10، شماره 1، اردیبهشت 1403، صفحه 57-71 اصل مقاله (633.36 K) | ||
نوع مقاله: علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/jfrd.2023.54759.1671 | ||
نویسندگان | ||
الهام حسنی1؛ سعید جلالی هنرمند2؛ مرتضی پوررضا* 3؛ علی بهشتی آل آقا4 | ||
1کارشناسی ارشد علوم و مهندسی جنگل، گروه مهندسی منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران | ||
2دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران | ||
3استادیار، گروه مهندسی منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران | ||
4دانشیار، گروه مهندسی علوم خاک، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
مقدمه و هدف: تنش خشکی از مهمترین عوامل محدودکننده رشد گیاهان در جهان و از شایعترین تنشهای غیرزیستی است. به ویژه در مناطق خشک و نیمه خشک، استقرار و رشد نهالهای جوان، کاملاً تحتتاثیر کمبود آب و تنش خشکی است. در این شرایط استفاده از همزیستی میکروارگانیسمها بهویژه قارچهای مایکوریزایی، میتواند با کمک به افزایش جذب آب و عناصر غذایی، اثر تنش خشکی را کاهش دهد. بنابراین، هدف از انجام این پژوهش، شناسایی اثر تلقیح قارچ مایکوریزا آربسکولار بر جذب برخی عناصر غذایی ماکرو و میکرو و همچنین فعالیت آنزیمهای آنتیاکسیدانی گونه پالونیا فورتونی (Paulownia fortunei (Seem.) Hemsl) بهعنوان یک گونه تندرشد بود. مواد و روشها: این آزمایش گلدانی، بهصورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه تکرار و دو عامل انجام گرفت. عامل اول شامل چهار سطح تنش خشکی (بدون تنش با آبیاری کامل 100 درصد ظرفیت زراعی، تنش ضعیف با آبیاری در 80 درصد ظرفیت زراعی، تنش متوسط با آبیاری در 60 درصد ظرفیت زراعی و تنش شدید با آبیاری در 40 درصد ظرفیت زراعی) و عامل دوم شامل دو سطح بدون و با قارچهای مایکوریزا آربسکولار بود. اعمال تیمارهای تنشخشکی بر اساس روش وزنی انجام شد. ویژگیهای مورد بررسی شامل اندازهگیری پروتئین محلول، آنزیمهای کاتالاز، پراکسیداز، سوپراکسید دیسموتاز و همچنین جذب عناصر غذایی همچون فسفر، نیتروژن، پتاسیم، روی، آهن و منگنز بود. پس از دستهبندی دادهها، پراکنش نرمال و همگنی واریانس دادهها بهترتیب با آزمون شاپیرو ویلک و آزمون لوون بررسی شد. از تحلیل واریانس دو طرفه برای بررسی معنیداری اثر ساده و متقابل عاملها استفاده شد و برای مقایسه میانگین دادهها، از آزمون چنددامنهای دانکن استفاده شد. یافتهها: نتایج نشان داد که اثر متقابل تنش خشکی و مایکوریزا بر هیچ یک از صفات مورد بررسی معنیدار نبود. اثر ساده مایکوریزا بر تغییرات آنزیم سوپراکسید دیسموتاز معنیدار بوده ولی بر دیگر صفات اندازهگیری شده معنیدار نشد. نتایج نشان داد که تنش خشکی بهطور معنیداری سبب افزایش مقدار پروتئین محلول، فعالیت آنزیم پراکسیداز و سوپراکسید دیسموتاز شد. مقایسه میانگینها نشان داد که بیشترین غلظت پروتئین محلول مربوط به تیمار تنش شدید با میانگین 95/38 و کمترین آن مربوط به تیمار بدون تنش (شاهد) با میانگین 45/31 میلی گرم بر گرم وزن تر برگ است ولی مابین تیمارهای تنش ضعیف، متوسط و تنش شدید تفاوت معنیداری مشاهده نشد. در مورد غلظت آنزیم کاتالاز مابین تیمارهای تنش متوسط و تنش شدید، همچنین تیمار تنش ضعیف و تنش متوسط اختلاف معنیداری مشاهده نشد. بیشترین غلظت آنزیم پراکسیداز مربوط به تیمار تنش شدید با میانگین 77/3 میلی گرم برمول بر دقیقه برمیلیگرم پروتئین و کمترین آن مربوط به تیمار بدون تنش (شاهد) با میانگین 21/3 میلی گرم بر مول بر دقیقه بر میلیگرم پروتئین بوده ولی، مابین تیمارهای تنش متوسط و تنش شدید و همچنین مابین تیمارهای تنش ضعیف و تنش متوسط اختلاف معنیداری مشاهده نشد. بیشترین غلظت آنزیم سوپراکسیددیسموتاز مربوط به تیمار تنش شدید با میانگین 176/0 و کمترین مقدار آن مربوط به تیمار شاهد یا بدون تنش با میانگین 108/0 میلیگرم برمول بر دقیقه برمیلیگرم پروتئین بود. غلظت آنزیم سوپراکسید دیسموتاز در تیمار با مایکوریزا با میانگین 159/0 میلیگرم برمول بر دقیقه برمیلیگرم پروتئین و به طور معنیداری بیشتر از غلظت این آنزیم در تیمار بدون مایکوریزا با میانگین 140/0 میلیگرم بر مول بر دقیقه بر میلیگرم پروتئین مشاهده شد. تنش خشکی همچنین باعث کاهش کلیه عناصر غذایی اندازهگیری شده شد؛ درحالیکه تلقیح با قارچ مایکوریزا سبب افزایش عناصر غذایی به جز نیتروژن در کلیه سطوح تنش خشکی شد. نتیجهگیری کلی: گرچه با افزایش سطوح تنش خشکی، جذب عناصر غذایی ماکرو و میکرو توسط نهالهای پالونیا فورتونی کاهش مییابد ولی کاربرد قارچ مایکوریزا میتواند در شرایط تنش خشکی، جذب عناصر غذایی ماکرو و میکرو را بهدلیل جذب بهتر آب توسط هیفهای گسترشیافته در اطراف ریشهها بهبود بخشد. بنابراین به نظر میرسد که قارچ مایکوریزا در جذب و متابولیسم عناصر مورد نیاز نهالهای پالونیا فورتونی بهویژه در شرایط تـنش اهمیت زیادی دارد. همچنین، تلقیح قارچ مایکوریزا باعث افزایش فعالیت آنزیم آنتیاکسیدانی سوپراکسید دیسموتاز (SOD) شد که میتواند مقاومت نهال را در برابر تنش خشکی افزایش دهد. | ||
کلیدواژهها | ||
پراکسیداز؛ پروتئین محلول؛ سوپراکسید دیسموتاز؛ کاتالاز | ||
مراجع | ||
Aghababaei, F.; Raiesi, F.; Nadian, H., Influence of mycorrhizal symbiosis on the uptake of nutrients in some commercial genotypes of Almond in a sandy loam soil. Iranian Journal of Soil Research 2011, 25 (2), 137- 147. (In Persian) Abbaspour, H.; Saeidi-Sar, S.; Afshari, H.; Abdel-Wahhab, M.A., Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology 2012, 169 (7), 704- 709. Alguacil, M. M.; Hernandez, J.A.; Caravaca, F.; Portillo, B.; Roldan, A., Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum 2003, 118 (4), 562- 570. Ashraf, M., Inducing drought tolerance in plants: recent advances. Biotechnology Advances 2010, 28, 169-183. Askari, A.; Ardakani, M.R.; Paknejad, F.; Hosseini, Y., Effects of mycorrhizal symbiosis and seed priming on yield and water use efficiency of sesame under drought stress condition. Scientia Horticulturae 2019, 257, 108749. Bartels, D.; Salamini, F., Desiccation tolerance in resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiology 2001, 127, 1346 -1353. Bahrinejad, R.; Khazaeian, A., Industrial applications of spruce poplar and palonium fast growing species, Proceedings of the 2th National Conference on Sustainable Agriculture and Environment, Hamadan, Iran 2013, 9 p. (In persain) Beauchamp, C.; Fridovich, I., Superoxide dismutse: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 1970, 44 (1), 276- 287. Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L., Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 2019, 10, 1068- 1085. Bozkurt, M.A.; Yarilga, T., The effects of sewage sludge applications on the yield, growth, nutrition and heavy metal accumulation in apple trees growing in dry conditions. Turkish Journal of Agriculture and Forestry 2003, 27, 285- 292. Bradford, M. A., rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochemistry 1976, 72, 248- 254. Chapman, H.D.; Pratt P.F., Methods of analysis for soils, plants and waters. University of California, Riverside 1961, p 309. Chance, B.; Maehly, A.C., Assay of catalase and peroxidase. In Methods in enzymology; Culowic, and Kaplan, N.O., Eds. Academic Press. Inc. New York 1995, pp 764- 765. Dutt, S.; Sharma, S.D.; Kumar, P., Inoculation of apricot seedlings with indigenous arbuscular mycorrhizal fungi in optimum phosphorus fertilization for quality growth attributes. Journal of Plant Nutrition 2013, 36, 15– 31. Emami, A., Soil and Water Research Institute. Methods of plant analysis 1996, p 982. (In Persian) Geneva, M. P.; Stancheva, I. V.; Boychinova, M. M.; Mincheva, N. H.; Yonova, P. A., Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture 2010, 90, 696 -702. Ghadirnezhad, Sh.; Fathi, R., A.; Taghavi Ghasemkheili, F.; Amiri, E., Plants responses under drought stress conditions: Effects of strategic management approaches- A review. Journal of plant Nutrition 2023, 46 (9), 2198- 2230. Ghanbari, E.; Fathizadeh, O.; Tabari, M., The effect of mycorrhizal fungi and growth-promoting rhizobacteria on the activity of antioxidant enzymes of Calotrope Seedlings under drought Stress, Journal of Forest Research and Development 2020, 6 (3), 477- 489. (In Persian) Hayat, S.; Ahmad, A., Salicylic Acid: A Plant Hormone. Springer 2007, Pp, 97-,99. Hu, Y.; Schemidhalter, U., Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 2005, 168, 541- 549. Hussain, H. A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L., Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science 2018, 9, 1- 21. Jia, J.; Li, S.; Cao, X.; Li, H.; Shi, W.; Polle, A.; Liu, T.; Peng, C.; Luo, Z., Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought, Physiologia Plantarum 2015, 157 (1), 38- 53. Khaleghi, A.; Naderi, R.; Brunetti, C.; Maserti, B.E.; Salami, S.A.; Babalar M., Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports 2019, 9, 1- 12. Moayedinezhad, A.; Mohammadparast, B.; Hosseini Salekdeh, Gh.; Mohseni fard, E.; Ali Nejatian, M., Effects of drought stress on total phenolic, phenolic acids, polyamines and some organic acids in two important Iranian grapevine cultivars. Journal of Plant Process and Function 2020, 8 (34), 19- 6. Mohammadi, H.; Amirikia, F.; Ghorbanpour, M.; Fatehi, F.; Hashempour, H., Salicylic acid induced changes in physiological traits and essential oil constituents in different ecotypes of Thymus kotschyanus and Thymus vulgaris under well- watered and water stress conditions. Industrial Crops and Products 2019, 129, 561- 574. Naheeda, B.; Ling, W.; Husain, A.; Rana Rov, A.; Ishfa Khan Tuaniie, M., Co-inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drouht stress by upregulating. Microbial Ecology 2022, 1- 18. Nodeh, M.; Aliarab, A. and Sadati, S. E., The effect of foliar application of growth regulators on survival and growth of Paulownia fortunei seedlings under drought stress. Wood and Forest Science and Technology Research Journal 2021, 28 (3), 37- 51. (In Persian) Ostadi, A.; Javanmard, A.; Amani Machini, M.; Kakaei, K., Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint (Mentha piperita L.) by Integrative Application of Biofertilizer and Stress- Modulating Nanoparticles. Plants 2023, 12 (1), 151. Phillips, J.M.; Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesiculararbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 1970, 55 (1), 158- IN118. Polcyn, W.; Paluch -Lubawa, E.; Lehman, T.; Mikula, R., Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short- term drought effects but does not improve fodder yield and quality. Frontiers in Plant Science 2019, 17,10, 496. Qiu-shuang, L.; Ya-Chao Xie, M.; Abeer, H.; Elsaved Fathi, A., Arbuscular mycorrhizal fungi and endopytic fungi activate leaf antioxidant defense system of lane late navel orange. Journal of Fungi 2022, 8 (3), 282. Saeidi Abueshaghi, Z.; Pilehvar, B.; Sayegena, S.V., Vegetative and physiological responses of purple in the face of water deficit stress. Forest Research and Development 2023, 9 (3), 349-363. (In Persian) Sanjari Mijani, M.; Sirousmehr, A.R.; Fakheri, B.A., The effects of drought stress and humic acid on some physiological characteristics of roselle (Hibiscus sabdariffa). Journal of Crops Improvement 2015, 17 (2), 403- 414. (In Persian) Sheikh, H.; Ali-Arab, A. R.; Sadati, S. E., Effect of salinity on seed germination, growth and survival of paulownia fortunei seedlings under laboratory and greenhouse conditions. Forest and Wood Products 2017, 70 (4), 649- 658. (In Persian) Sinha, A.K., Colorimetric assay of catalase. Analytical Biochemistry 1972, 47 (2), 389- 394. Spinoso- Castillo, J.; Rosario Moreno- Hernandez, M.; Mancilla- Alvarez. Lino, E., Arbuscular Mycorrhizal Symbiosis Improves Ex Vitro Acclimatization of Sugarcane Plantlets (Saccharum spp.) under Drought Conditions. Plants 2023, 12 (3), 687. Swamy, S. L.; Mishra, A.; Pur, S., Comparison of growth, biomass and nutrient distribution in five promising clones of populus deltoids under an agrisilviculture system. Bioresource Technology 2006, 97 (1), 57- 68. Wu, M.; Zhang, W. H.; Ma, C.; Zhou, J. Y., Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings, Russian Journal of Plant Physiology 2013, 60 (5), 681- 692. Zafari, M.; Ebadi, A.; Jahanbakhsh, S.; Sedghi, M., Safflower (Carthamus tinctorius L.) biochemical properties, yield, and oil content affected by 24 -epibrassinosteroid and genotype under drought stress. Journal of Agricultural and Food Chemistry 2020, 68, 6040 - 6047. Zamani Kebraabadi, B.; Hojati, S.M.; Rejali, F.; Esmaeili sharif, M.; Rahmani. H.R., Effects and identification of inoculated Arbuscular Mycorrhizal fungi of resilience to lead and zinc on some morphological treats of Cerasus mahaleb L. Mill. Journal of Forest Research and Development 2020. 6 (2), 295- 311. (In Persian) Zamani Kebraabadi, B.; Hojati, S.M.; Rejali, F.; Esmaeili sharif, M.; Saboohi, R., Investigating the effect of mycorrhizal fungi on elderberry seedlings (Elaeagnus angustifolia L.) under water stress. Forest Research and Development 2021, 7 (4), 623-638. (In Persian) Zhang, ZH.; Zhang, J.; Xu, G.; Zhou, L.; Li, Y., Arbuscular Mycorrhizal fungi improve the growth and drought to lerance of zenia insignis seedlings under drowth stress. New Forests 2019, 50 (4), 593- 604. | ||
آمار تعداد مشاهده مقاله: 474 تعداد دریافت فایل اصل مقاله: 314 |