تعداد نشریات | 13 |
تعداد شمارهها | 147 |
تعداد مقالات | 1,465 |
تعداد مشاهده مقاله | 2,252,414 |
تعداد دریافت فایل اصل مقاله | 1,880,653 |
بررسی ارتباط کربن آلی رسوب با ویژگیهای هیدروژئومورفولوژیک حوزه آبخیز (مطالعه موردی: استان اردبیل) | ||
تحقیقات کاربردی خاک | ||
دوره 10، شماره 4، اسفند 1401، صفحه 11-24 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
کیوان خرمی1؛ حبیب نظرنژاد* 2؛ احمد محمودزاده1؛ فرخ اسدزاده3؛ اسماعیل شیدای کرکج4 | ||
1دانشگاه ارومیه | ||
2هیات علمی دانشگاه ارومیه | ||
3عضو هیات علمی گروه مهندسی علوم خاک دانشگاه ارومیه | ||
4گروه مرتع و آبخیزداری دانشگاه ارومیه | ||
چکیده | ||
شناخت عوامل مؤثر در ایجاد رسوب، نقش مهمی در درک پدیده فرسایش و عواقب آن داشته و از اصول مهم مدیریت بهینه یک حوزه آبخیز بهشمار میرود. در بررسی ارتباط میان پارامترهای محیطی و هیدروژئومورفولوژیک حوزه آبخیز با فرسایش و رسوب تاکنون بیشتر بر ویژگیهای کمی رسوبات تأکید شده، در حالی که در این پژوهش ارتباط کربن آلی رسوب بهعنوان یک شاخص مهم کیفیت با پارامترهای اقلیمی شامل بارندگی متوسط سالانه، دمای میانگین سالانه، توپوگرافی شامل ارتفاع، درصد شیب، جهت شیب و عامل زمینشناسی (سازند) در سطح استان اردبیل بررسی شده است. 98 نمونه رسوب پس از جمعآوری از سطح محدوده مطالعاتی، در آزمایشگاه به روش والکلی بلک اصلاحشده برای استخراج میزان کربن آلی تجزیه و آزمایش شده و با استفاده از روشهای آماری رگرسیون گام به گام و رگرسیون حداقل مربعات جزئی (PLSR) مورد آنالیز و تحلیل قرار گرفتند. یافتههای پژوهش نشان داد از میان پارامترهای هیدروژئومورفولوژیک، دو پارامتر جهت شیب و مقاومت سازند نسبت به فرسایش بهترتیب با ضرایب رگرسیونی 293/0- و 078/0- بهعنوان عوامل تأثیرگذار بر کربن آلی رسوب شناخته شدند که همبستگی و ارتباط معکوسی با آن دارند و جهت شیب تأثیر معنیدارتری نسبت به عامل سازند برای تبیین تغییرات کربن آلی رسوب دارد که خروجی هر دو مدل رگرسیونی تقریبا مشابه میباشد. بنابراین کربن آلی رسوب علاوه بر کمیت و مقدار رسوبات میتواند بهعنوان شاخصی مهم برای بررسی وضعیت فرآیندهای تخریب و فرسایش حوزه آبخیز و همچنین هدررفت کربن آلی خاک مورد توجه قرار گیرد. | ||
کلیدواژهها | ||
کربن آلی؛ رسوب؛ رگرسیون گام به گام؛ رگرسیون حداقل مربعات جزئی؛ متغیرهای محیطی | ||
مراجع | ||
Adesuyi A. Ngwoke M., Akinola M., Njoku K. and Jolaoso A. 2016. Assessment of physicochemical characteristics of sediment from nwaja creek, Niger Delta, Nigeria. Journal of Geoscience and Environment Protection, 4:16-27.
Ahmadabadi A., karam A., Pourbashir M. 2015. Hydrogeomorphology analysis of hydrological response units (HRU) in the Ardebil’s Gare-Soo basin. Applied Geomorphology of Iran, 3 (5):59-73. (In Persian)
Asfaw D., Workineh G. 2019. Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation, International Soil and Water Conservation Research, 7(2): 150-157.
Bagherifam S., Karimi A., Lakzian A., Izanloo A. 2013. Effects of land use management on soil organic carbon, particle size distribution and aggregate stability along hill slope in semi-arid areas of northern Khorasan. Journal of water and soil conservation, 20(4): 51 – 73. (In Persian)
Bajocco S., De Angelis A., Perini L., Ferrara A., Salvati L. 2012. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study. Environmental Management, 49 (5): 980–989.
Borji M., Nazari Samani A.A., Rashidi Sh., Tiefenbacher J.P. 2020. Catchment-scale soil conservation: Using climate, vegetation, and topo-hydrological parameters to support decision making and implementation. Science of the Total Environment, 712, 136124.
Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schutt B., Ferro V., Bagarello V., Van Oost K., Montanarella L., Panagos P. 2017. An assessment of the global impact of 21st century land use change on soilerosion. Nature Communications, 8: 1 – 13.
Bortone G., Leonardo p. 2007. Sediment and Dredged Material Treatment (Ed.) Sustainable Management of Sediment Resources – Book series (Volume 2), Elsevier, pp. 1 – 58.
Feiznia S. 2018. Applied sedimentology, 1st Ed. Gorgan University of Agricultural Sciences and Natural Resources Press, Iran, 364 p. (In Persian)
García‐Ruiz J. M., Beguería S., Lana‐Renault N., Nadal‐Romero E., Cerdà A. 2017. Ongoing and Emerging Questions in Water Erosion Studies. Land Degradation and Development, 28(1): 5– 21.
Habibpour K., Safari R. 2017. Comprehensive Manual for Using SPSS in Survey Researches. 7th Ed. Motafakeran Press, Tehran, 861 p. (In Persian)
Haghian I., salari A. 2018. Investigating environmental factors controlling soil organic carbon in rangelands of arid regions (case study: Yansi region of Gonabad). Journal of Water and Soil Conservation, 25(3): 281-289. (In Persian)
Hevia G.G., Mendez M., Buschiazzo D.E. 2007. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma, 140(1): 90-96.
Honarbakhsh A., Niazi A., soltani S., tahmasebi P. 2019. Modeling the relationship between suspended sediments and hydrological and environmental characteristics of a basin (case study: basin of Dez Dam). Quantitative Geomorphological Research, 8(1): 105-117. (In Persian)
Khaledi Darvishan A., Sadeghi S., Gholami L. 2011. 'Effects of Erosion Sensitivity and Different Land Uses on Morphometric Characteristics of Bed Sediments (Case Study: Vazrood River)'. Water and Soil Science, 21(4): 139-151. (In Persian)
Khalifezadeh R., Tamartash R., Tatian M., Sarajian Maralan M. 2018. An estimation of topsoil organic carbon by combining factor analysis and multiple regression in semi-steppe rangelands of Lazour, Firouzkooh. Iranian Journal of Range and Desert Research, 25(3): 699-712. (In Persian)
Koiter A. J., Owens P. N., Petticrew E. L., Lobb D. A. 2017. The role of soil surface properties on the particle size and carbon selectivity of interrill erosion in agricultural landscapes. Catena, 153: 194-206.
Li M., Kong F., Li Y., Dong Y., Zhang J., Xi M. 2020. Impact of sub-watershed characteristics and changes on sediment DOM quantity and quality over Jiaozhou Bay. Ecological Indicators, 118, 106777.
Li Z., Fang H. 2016. Impacts of climate change on water erosion: A review. Earth - Science Reviews, 163: 94 – 117.
Lozano-García B., Parras-Alcántara L., Brevik E.C. 2016. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Science of the Total Environment, 544: 963-970.
Maetens W., J. Poesen J., Vanmaercke M. 2012. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean. Earth - Science Reviews, 115(1-2): 21 – 36.
Mahmoodabadi M., Zamani S., Yazdanpanah N. 2021. Organic carbon loss and sediment enrichment during interrill erosion influenced by simultaneous wind and rain. Watershed Engineering and Management, 13(1): 13-28. (In Persian)
Maleki M., Mosayebi M. 2011. Cartography of watersheds. 1St Ed. Hazrat Abbas Press, 224 P. (In Persian)
Maleki S., Khormali F., Kiani F., Karimi A. 2013. Effect of slope position and aspect on some physical and chemical soil characteristics in a loess hillslope of Toshan area, Golestan Province, Iran. Journal of Water and Soil Conservation, 20(3):93-112. (In Persian)
Mansourfar K. 2018. Advanced Statistical methodes: using applied software. 5th Ed. Tehran University Press, 480 p. (In Persian)
Meteorological Organization of Ardabil Province Portal) http://www.ardebilmet.ir/to/3-eglim.htm(.
Motamedi R., Azari M. 2018. The Relationship between Geomorphic Characteristics and Watershed Sediment Yield: A Case of Selected Subwatersheds of Khorasan Razavi. E.E.R, 7 (4): 82-101. (In Persian)
Nosrati K. 2011. The Effect of Land use and Soil Erosion on Soil Organic Carbon and Nitrogen Stock. E.E.R, 1 (3): 127-140. (In Persian)
Peyrowan H., Bayat R., Shariat jafari M., Jafari A. 2012. Classification and studying of erodibility rates of geological formations of watershed basins of Iran, Watershed Basins Atlas Project. Soil Conservation and Watershed Management Research Center of Iran, 239 p. (In Persian)
Prosdocimi M., Jordán A., Tarolli P., Keesstra S., Novara A., Cerdà A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment, 547: 323 – 330.
Sadeghi S., Zarif Moazam M., Mirnia S. 2011. Effect of Slope Steepness and Aspect on Surface Runoff and Sediment Yield from Experimental Small Plots in Kojour Watershed. Water and Soil, 25(3): 583 – 592. (In Persian (
Shayan S., Zare GH. R., Yamani M., Sharifikia M., Sultanpour M. 2013. Analysis of the trend of statistics changes in the discharge and sediment of the Mend watershed and its application in environmental planning. Applied Geomorphology, 1(2): 50-37.
Sheidai Karkaj E., Sepehry A., Barani H., Motamedi J. 2017. Soil organic carbon reserve relationship with some soil properties in East Azerbaijan rangelands. Journal of Rangeland, 11(2): 125 – 138. (In Persian)
Shi P., Schulin R. 2018. Erosion-induced losses of carbon, nitrogen phosphorus and heavy metals from agricultural soils of contrasting organic matter management. Science of the Total Environment, 618: 210-218.
Shukla M.K., Lal R. 2005. Erosional effects on soil organic carbon stock in an on-farm study on Alfisols in west central Ohio. Soil and Tillage Research, 81: 173-181.
Spatial Planning of Ardabil Provincef Analysis of watersheds and sub-watersheds report. 2019. Ardabil Province Program and Budget Organization, 214 p (In Persian).
Symeonakis E., Calvo-Cases A., Arnau E. 2007. Land use change and land degradation in Southeastern Mediterranean Spain. Environmental Management, 40 (1): 80–94.
Van Oost K., Quine T.A., Govers G., De Gryze S., Six J., Harden J.W., Ritchie J.C., McCarty G.W., Heckrath G., Kosmas C., Giraldez J.V., Marques Da Silva J.R., Merckx R. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science, 318: 626 – 629.
Vanwalleghem T., Gómez J.A., Infante Amate J., González de Molina M., Vanderlinden K., Guzmán G., Laguna A., Giráldez J.V. 2017. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17: 13–29.
Wang Y., Fu B., Lü Y., Song C., Luan Y. 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quaternary Research, 73: 70-76.
Wold S., Sjöström M. Eriksson, L. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2): 109-130.
Xu Y., Luo D., Peng J. 2011. Land use change and soil erosion in the Maotiao River watershed of Guizhou Province. Journal of Geographical Sciences, 21, 1138.
Yang F., Zhang G.L., Sauer D., Yang F., Yang R.M., Liu F., Song X.D., Zhao Y.G., Li D.C., Yang J.L. 2020. The geomorphology – sediment distribution – soil formation nexus on the northeastern Qinghai-Tibetan Plateau: Implications for landscape evolution. Geomorphology, 354, 107040.
Yimer F., Ledin S., Abdelkadir A. 2006. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma, 135: 335-344.
Zhang H. Y., Shi Z. H., Fang N. F., Guo M. H. 2015. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234, 1. | ||
آمار تعداد مشاهده مقاله: 1,084 تعداد دریافت فایل اصل مقاله: 798 |