تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,263,866 |
تعداد دریافت فایل اصل مقاله | 1,895,913 |
برآورد ترسیب کربن و تنفس خاک جنگل با استفاده از مدلهای مبتنی بر یادگیری ماشین در جنگلهای شرق استان مازندران | ||
پژوهش و توسعه جنگل | ||
دوره 8، شماره 4، آذر 1401، صفحه 371-388 اصل مقاله (1.32 M) | ||
نوع مقاله: علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/jfrd.2022.54304.1613 | ||
نویسندگان | ||
سید محمد حجتی* 1؛ محیا تفضلی2؛ مریم اسدیان3؛ علی بالویی4 | ||
1استاد، گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
2دانشآموخته دکتری جنگلداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
3دانشجوی دکتری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
4دانشجوی کارشناسی ارشد جنگلداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
چکیده | ||
در این پژوهش مدلهای مبتنی بر یادگیری ماشین (رگرسیون-خطی، k-نزدیکترین همسایه، ماشین بردار پشتیبان، جنگل تصادفی) برای برآورد ترسیب کربن و تنفس خاک در جنگلهای شرق استان مازندران ارزیابی شدند. پس از مشخص شدن نقاط نمونهبرداری، در هر یک از قطعات نمونه، قطر و ارتفاع درختان اندازهگیری و زیتوده روی-زمینی درختان با استفاده از مدلهای آلومتریک جنگل هیرکانی محاسبه شد. نمونه خاک از عمق صفر تا 20 سانتیمتر تهیه و تنفس خاک با دستگاه CO2-port اندازهگیری شد. تنفس خاک با استفاده از متغیرهای وزن مخصوص ظاهری، درصد رطوبت، درصد اجزای بافت، دمای خاک، نیتروژن کل، فسفر و پتاسیم قابلجذب، درصد کربن و زیتوده درختان برآورد شد. ترسیب کربن خاک با کمک متغیرهای دما و رطوبت خاک و زیتوده درختان برآورد شد. مدل جنگل تصادفی (47/10RMSE= و 82/0R2=) و ماشین بردار پشتیبان (77/0RMSE= و 90/0R2=) بهترتیب بالاترین عملکرد در برآورد ترسیب کربن و تنفس خاک داشت. متغیر رطوبت خاک در برآورد ترسیب کربن (مدل جنگل تصادفی) و تنفس خاک (مدل ماشین بردار پشتیبان) دارای بالاترین اهمیت نسبی بود. با توجه به نتایج بهدستآمده میتوان با داشتن زیتوده روی-زمین درختان و ویژگیهای اولیه خاک، مقدار ترسیب کربن و تنفس خاک را در جنگل با دقت مناسب برآورد کرد. | ||
کلیدواژهها | ||
تغییر اقلیم؛ جنگل تصادفی؛ ماشین بردار پشتیبان؛ ویژگیهای خاک جنگل | ||
مراجع | ||
Adjuik, T. A.; Davis, S. C., Machine Learning Approach to Simulate Soil CO2 Fluxes under Cropping Systems. Agronomy 2022, 12 (1), 197. Alazmani, M.; Hojati, S. M.; Waez-Mousavi, S. M.; Tafazoli, M., Effect of alder plantation age on soil carbon sequestration. Forest Research and Development 2021, 7 (2), 279-291. (In persian) Ebrahimi, M.; Sarikhani, M. R.; Sinegani, A. A. S.; Ahmadi, A.; Keesstra, S., Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena 2019, 174, 371-382. Estévez, V.; Beucher, A.; Mattbäck, S.; Boman, A.; Auri, J.; Björk, K.-M.; Österholm, P., Machine learning techniques for acid sulfate soil mapping in southeastern Finland. Geoderma 2022, 406, 115446. Hamrani, A.; Akbarzadeh, A.; Madramootoo, C. A., Machine learning for predicting greenhouse gas emissions from agricultural soils. Science of The Total Environment 2020, 741, 140338. Hodson, T.O., Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development 2022, 15 (14), 5481-5487. Hojjati, S. M.; Hashemi, S. A.; Hosseyni, S. M.; Asadiyan, M.; Tafazoli, M., The Effect of plantation with native and exotic species on soil CO2 emissions (The case study: Darabkola forest). Journal of Plant Ecosystem Conservation 2020, 8 (16), 95-110. (In persian) Hojjati, S. M.; Tafazoli, M.; Imani, M.; Alazmani, M.; Fallah, A.; Pourmajidian, M. R., Variation in Carbon Sequestration and Soil Properties in Relation to Stand Age in Maple and Alder Plantations. Journal of Sustainable Forestry 2022, 1-15. Hojjati, S. M.; Lamersdorf, N. P., Effect of canopy composition on soil CO2 emission in a mixed sprucebeech forest at Solling, Central Germany. Journal of Forestry Research 2010, 21 (4), 461-464. Huluka, G.; Miller, R., Particle size determination by hydrometer method. Southern Cooperative Series Bulletin 2014, 419, 180-184. Liakos, K. G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D., Machine learning in agriculture: A review. Sensors 2018, 18 (8), 2674. Mannan, A.; Feng, Z.; Ahmad, A.; Liu, J.; Saeed, S.; Mukete, B., Carbon dynamic shifts with land use change in Margallah Hills National Park, Islamabad (Pakistan) from 1990 to 2017. Applied Ecology and Environmental Research 2018, 16 (3), 3197-3214. Matinfar, H. R.; Maghsodi, Z.; Mousavi, S. R.; Rahmani, A., Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale. Catena 2021, 202, 105258. Molina, A. J.; Bautista, I.; Lull, C.; del Campo, A.; González-Sanchis, M.; Lidón, A., Effects of Thinning Intensity on Forest Floor and Soil Biochemical Properties in an Aleppo Pine Plantation after 13 Years: Quantity but Also Quality Matters. Forests 2022, 13 (2), 255. Naderi, M.; Kialashaki, A.; Veisi, R.; Sheykheslami, A.; Tafazoli, M., Effect of Site on Soil Properties and Carbon Sequestration in Populus deltoids Stand in Sari. Ecology of Iranian Forest 2021, 9 (18), 187-195. (In persian) Ni, X.; Liao, S.; Wu, F.; Groffman, P. M., Short-term precipitation pulses stimulate soil CO2 emission but do not alter CH4 and N2O fluxes in a northern hardwood forest. Soil Biology and Biochemistry 2019, 130, 8-11. Olsen, S. R., Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture: 1954. Osabohien, R.; Matthew, O.; Aderounmu, U.; Olawande, T., Greenhouse gas emissions and crop production in West Africa: Examining the mitigating potential of social protection. International Journal of Energy Economics and Policy 2019, 9 (1), 57. Pan, Y.; Birdsey, R. A.; Fang, J.; Houghton, R.; Kauppi, P. E.; Kurz, W. A.; Phillips, O. L.; Shvidenko, A.; Lewis, S. L.; Canadell, J. G., A large and persistent carbon sink in the world’s forests. science 2011, 333 (6045), 988-993. Piper, C. S., Soil and plant analysis. Scientific Publishers: 2019. Razakamanarivo, R. H.; Grinand, C.; Razafindrakoto, M. A.; Bernoux, M.; Albrecht, A., Mapping organic carbon stocks in eucalyptus plantations of the central highlands of Madagascar: A multiple regression approach. Geoderma 2011, 162 (3-4), 335-346. Sharifi, A.; Amini, J.; Pourshakouri, F., Allometric model development for Above-Ground Biomass estimation in Hyrcanian forests of Iran. World Applied Sciences Journal 2013, 28 (9), 1322-1330. Tafazoli, M.; Hojjati, S. M.; Jalilvand, H.; Lamersdorf, N.; Tafazoli, M., Effect of nitrogen addition on soil CO2 efflux and fine root biomass in maple monocultures of the hyrcanian region. Annals of Forest Science 2021, 78 (2), 1-11. Tavares, R. L. M.; Oliveira, S. R. d. M.; Barros, F. M. M. d.; Farhate, C. V. V.; Souza, Z. M. d.; Scala Junior, N. L., Prediction of soil CO 2 flux in sugarcane management systems using the random forest approach. Scientia Agricola 2018, 75, 281-287. Were, K.; Bui, D. T.; Dick, Ø. B.; Singh, B. R., A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 2015, 52, 394-403. Yeomans, J.; Bremner, J., Carbon and nitrogen analysis of soils by automated combustion techniques. Communications in Soil Science and Plant Analysis 1991, 22 (9-10), 843-850. Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P., Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445-452. Zhang, H.; Wu, P.; Yin, A.; Yang, X.; Zhang, M.; Gao, C., Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment 2017, 592, 704-713. Zhu, X.; He, H.; Ma, M.; Ren, X.; Zhang, L.; Zhang, F.; Li, Y.; Shi, P.; Chen, S.; Wang, Y., Estimating ecosystem respiration in the grasslands of northern China using machine learning: Model evaluation and comparison. Sustainability 2020, 12 (5), 2099. | ||
آمار تعداد مشاهده مقاله: 2,296 تعداد دریافت فایل اصل مقاله: 1,378 |