تعداد نشریات | 13 |
تعداد شمارهها | 147 |
تعداد مقالات | 1,472 |
تعداد مشاهده مقاله | 2,253,783 |
تعداد دریافت فایل اصل مقاله | 1,882,870 |
تحلیل حساسیت تبخیر و تعرق مرجع در اقلیم مرطوب حاشیه جنوبی دریای خزر | ||
تحقیقات کاربردی خاک | ||
دوره 10، شماره 2، شهریور 1401، صفحه 79-90 اصل مقاله (949.12 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
علی اصغر ذوالفقاری* 1؛ محمد نصرالهی2؛ محمد رضا یزدانی3 | ||
1هیئت علمی دانشکده کویر شناسی دانشگاه سمنان | ||
2دانشجوی دکتری بیابانزدایی، گروه بیابان، دانشکده کویرشناسی، دانشگاه سمنان | ||
3دانشگاه سمنان | ||
چکیده | ||
تغییر در متغیرهای اقلیمی مؤثر بر دسترسی به منابع آب میتواند نقش کلیدی در توسعه پایدار کشاورزی و محیطزیست داشته باشد. ET0 پس از بارش مهمترین متغیر اثرگذار بر دسترسی به منابع آب است. بنابراین مطالعه حاضر به بررسی تغییرات زمانی و مکانی ET0، تحلیل روند، تحلیل حساسیت و تحلیل سهم نسبی متغیرهای اقلیمی شامل ساعات آفتابی (SD)، رطوبت نسبی (RH)، سرعت باد (WS)، فشار هوا (P)، دمای حداکثر (Tmax) و حداقل (Tmin) برای یک دوره 30 ساله (2017 - 1988) در 7 ایستگاه سینوپتیک حاشیه جنوبی دریای خزر در مقیاسهای زمانی مختلف میپردازد. توزیع مکانی ET0 در حوزه دریای خزر نشان داد که ET0 از غرب به شرق افزایش می یابد. روند تغییرات زمانی ET0 نشان داد که در مقیاس زمانی سالانه و ماهانه شامل ماههای مارس، می، ژوئن، جولای، آگوست و سپتامبر تمام ایستگاهها در سطح معنیداری 5 درصد دارای روند صعودی بودند. در حالیکه نتایج تحلیل حساسیت نشان داد که ET0 بیشترین حساسیت را به متغیرهای RH ، Tmax و WS دارد، اما نتایج تحلیل نرخ سهم نسبی متغیرهای اقلیمی نشان داد که متغیرهای RH، WS و Tmin بترتیب کنشگران اصلی ET0 در کرانه جنوبی دریای خزر در طول 30 سال گذشته هستند. | ||
کلیدواژهها | ||
تحلیل حساسیت؛ نرخ سهم نسبی؛ اقلیم مرطوب؛ تبخیر و تعرق مرجع | ||
مراجع | ||
Allen RG., Pereira LS., Raes D., and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 FAO, Rome 300:D05109
Alizadeh A., Mirshahi B., Hasheminia M., and Sanaeinejad H. 2001. Evaluation of accuracy and performace of estimated potential evapotranspiration using Hargreaves-Samani method and evaporation pan in synoptic stations of Khorasan province, Newar, No. 43 and 42, pp. 70-51. (In Persian)
Asadzadeh F., Kaki M., and Shakiba S. 2017. Trends analysis of reference evapotranspiration in the synoptic sites of Kurdistan Province Using Spearman’s Test. Iran-Water Resources Research. Volume 13, No. 1, 256-222. (In Persian)
Beik Mohammadi H. 2003. Attractions of ecotourism in Southern Coasts of the Caspian Sea. Scientific- Research Quarterly of Geographical Data. Volume 12. Issue 46. pp. 51-54. (In Persian)
Beven K. 1979. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44(3-4), 169-190.
Chervenkov H., and Slavov K. 2017. Theil-Sen estimator for the parameters of the generalized extreme value distributions: Demonstration for Meteorological Applications. Comptes rendus de l’Académie bulgare des Sciences, 70(12).
Clow D.W. 2010. Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. Journal of Climate, 23: 2293–2306.
Dinpashoh Y. 2Analysis of temporal trend changes of potential evapotranspiration from Reference crop (Case study: Hamedan station). 2011. Geographical space. Issue 34 (Ministry of Science) / ISC (27 pages 260 to 286). (In Persian)
Gao Z., He J., Dong K., and Li X. 2017. Trends in reference evapotranspiration and their causative factors in the West Liao River basin, China Agricultural and Forest Meteorology. 232:106-117
Gocic M., and Trajkovic S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change. 100:172-182
Gong L., Xu C-y., Chen D., Halldin S., and Chen YD. 2006. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of Hydrology. 329:620-629
Grinsted A., Moore J.C., and Jevrejeva S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566.
Hajjam S., Khoshkhoo Y., and Shamsolddin R. 2004. Analysis of the trend of seasonal and annual rainfall changes in some selected stations in the central part of Iran using non-parametric methods. Geographical Research Quarterly. Vol, 41. No, 64. P, 153-168. (In Persian)
Hu Q., Pan F., Pan X., Hu L., Wang X., Yang P., and Pan Z. 2018. Dry-wet variations and cause analysis in Northeast China at multi-time scales. Theoretical and Applied Climatology, 133(3), 775-786.
Javadi MH. 1964. Buildings on the south shore of the Caspian Sea for students of architecture and social sciences. Academic Press, University of Tehran, 191p. (In Persian)
Jerszurki D., de Souza JLM., and Silva LdCR. 2019. Sensitivity of ASCE-Penman–Monteith reference evapotranspiration under different climate types in Brazil. Climate dynamics. 53:943-956
Kendall M. 1975. Rank Correlation Methods; Charles Griffin: London.
Koudahe K., Djaman K., and Adewumi JK. 2018. Evaluation of the Penman–Monteith reference evapotranspiration under limited data and its sensitivity to key climatic variables under humid and semiarid conditions. Modeling Earth Systems and Environment. 4:1239-1257
Kovoor GM., Nandagiri L. 2018. Sensitivity Analysis of FAO-56 Penman–Monteith Reference Evapotranspiration Estimates Using Monte Carlo Simulations. In: Hydrologic Modeling. Springer, pp 73-84
Kumar M., Raghuwanshi N., and Singh R. 2011. Artificial neural networks approach in evapotranspiration modeling: a review. Irrigation science. 29(1): p. 11-25.
Mann, H.B., 1945. Nonparametric tests again trend. Econometrica 13, 245-259.
Mosaedi A., Sough MG., Sadeghi S.H., Mooshakhian Y., Bannayan M. 2017. Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: a qualitative approach. Theoretical and applied climatology. 128:857-873
Naseri A., Abbasi F., Akbari M., 2017. Estimating agricultural water consumption by analyzing water balance. Irrigation and drainage structures engineering research. Volume 18, Issue 68. Pages 17-32. (In Persian)
Nourani V., Nezamdoost N., Samadi M., Daneshvar Vousoughi, F. 2015. Wavelet-based trend analysis of hydrological processes at different timescales. Journal of Water and Climate Change. 6:414-435
Nouri M, Homaee M, Bannayan M. 2017. Quantitative trend, sensitivity and contribution analyses of reference evapotranspiration in some arid environments under climate change. Water resources management. 31:2207-2224
Partal T, Kahya E. 2006. Trend analysis in Turkish precipitation data Hydrological Processes: An International Journal. 20:2011-2026
Poddar A., Gupta P., Kumar N., Shankar V, Ojha C. 2018. Evaluation of reference evapotranspiration methods and sensitivity analysis of climatic parameters for sub-humid sub-tropical locations in western Himalayas (India). Journal of Hydraulic Engineering. 1-11
Shahedi K., and Zarei M. 2011. Assessment of potential evapotranspiration estimation methods in Mazandaran Province. Journal of Irrigation and Water Engineering. Volume 1, Number 3. Pages 12 – 21. (In Persian)
Shenbin C., Yunfeng L. and Thomas A. 2006. Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Climatic change, 76(3), pp.291-319.
Shojaei, M. 2016. Sensitivity analysis of reference evapotranspiration of Penman-Monteith model using Monte Carlo method. M.Sc. thesis. Faculty of Kavirshenasi, Semnan university. 104p. (In Persian)
Tabari H., and Talaee PH. 2014. Sensitivity of evapotranspiration to climatic change in different climates. Global and Planetary Change. 23-115:16
Thiel., H. 1950. A rank-invariant method of linear and polynomial regression analysis, Part 3. In: Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A, pp 1397-1412
Wang Z., Xie P., Lai C., Chen X., Wu X., Zeng Z., and Li J. 2017. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of Hydrology. 544:97-108
Wang Z., Ye A., Wang L., Liu K., and Cheng L. 2019. Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979–2015. gricultural Water Management. 213:1096-1108 doi:https://doi.org/10.1016/j.agwat.2018.12.006
Xu C-y., Gong L., Jiang T., Chen D., and Singh V. 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of hydrology. 327:81-93
Yang Y., Chen R., Song Y., Han C., Liu J., and Liu Z. 2019. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. Journal of Hydrology. 568:147-159 doi:https://doi.org/10.1016/j.jhydrol.2018.10.069
Yin Y., Wu S., Chen G., and Dai E. 2010. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theoretical and Applied Climatology. 101:19-28
Zahraei, A., Khoshhal Dastjerdi, J., and Qangarmeh, A. 2018. Estimation of evaporation rate from the Caspian Sea and its temporal-spatial analysis. Natural Geography Research, 50(3): 425-441. (In Persian)
| ||
آمار تعداد مشاهده مقاله: 1,222 تعداد دریافت فایل اصل مقاله: 921 |