تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,275,024 |
تعداد دریافت فایل اصل مقاله | 1,909,560 |
ارزیابی نرمافزار HYDRUS-2D/3D در شبیهسازی نفوذ آب به خاک در بافتهای مختلف با استفاده از رویکرد حل معکوس | ||
تحقیقات کاربردی خاک | ||
دوره 10، شماره 1، خرداد 1401، صفحه 98-110 اصل مقاله (1.32 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
پریسا مشایخی* 1؛ محسن دهقانی2 | ||
1بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران | ||
2- استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان ایران | ||
چکیده | ||
در سالهای اخیر، استفاده از روشهای حل عددی معکوس در حل مسائل حرکت آب در خاک مورد توجه بسیاری از پژوهشگران قرار گرفته است. در این پژوهش از نرمافزار HYDRUS- 2D/3D برای شبیهسازی نفوذ آب به خاک از طریق نفوذسنج استوانههای دوگانه، در بافتهای مختلف و با استفاده از رویکرد حل معکوس استفاده شد. برای این منظور، دادههای حاصل از آزمایشهای نفوذپذیری به روش استوانههای دوگانه در 63 نقطه از مناطق مختلف استان اصفهان به عنوان ورودی مدل مورد استفاده قرار گرفت. خاکهای مورد مطالعه در هفت کلاس بافتی شامل لومشنی (SL)، لوم رس شنی (SCL)، لوم (L)، لوم سیلتی (SiL)، لوم رسی (CL)، لوم رس سیلتی (SiCL) و رس سیلتی (SiC) قرار گرفتند. بر اساس نتایج ارزیابیهای آماری صورت گرفته، در همه بافتها، همخوانی بسیار خوبی بین دادههای نفوذ تجمعی اندازهگیریشده و شبیهسازیشده مشاهده شد. مقادیر ضریب تبیین (R2) برای بافتهای SL، SCL، L، SiL، CL، SiCL و SiC به ترتیب معادل 998/0، 999/0، 992/0، 996/0، 983/0، 976/0 و 995/0 بود. میزان خطای شبیهسازی با افزایش درصد رس در بافت خاک، افزایش پیدا کرد؛ بهگونهای که بیشترین خطای شبیهسازی در بافت SiC (045/0NRMSE= ) و کمترین میزان خطای شبیهسازی در بافت SL (015/0NRMSE=) مشاهده شد که در حدود 67 درصد بهبود در فرآیند شبیهسازی بوده است. در کل دادههای نفوذ شبیهسازی شده در آزمایش استوانههای دوگانه به کمک نرمافزار HYDRUS -2D/3D و رویکرد حل عددی معکوس در همه بافتهای مورد مطالعه، از دقت قابل قبولی و قابلیت اطمینان بالایی برخوردار بودند. | ||
کلیدواژهها | ||
استوانههای دوگانه؛ حل عددی معکوس؛ نفوذ تجمعی | ||
مراجع | ||
Abbasi F., Šimůnek J., Feyen J., van Genuchten MTh., and Shouse PJ. 2003. Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: homogeneous soil. Transactions of ASAE, 46(4): 1085–1095.
Alletto L., Pot, V., Giuliano S., CostesM., Perdrieux F., and Justes E. 2015. Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243 (244): 18–28.
Cook F.J. 2002. The Twin-Ring Method for Measuring Saturated Hydraulic Conductivity and Sorptivity in the Field. McKenzie, N. Coughlan, K. and H. Cresswell (ed.), Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing. Pp 108-118.
Duiker S.W., Flanagan D.C., and Lal R. 2001. Erodibility and infiltration characterstics of fire major soils of southwest Spain. Catena, 45(2): 103-121.
El-Nesr N. M., Alazba A. A., and Šimůnek J. 2014. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrigation Scince, (32): 111–125.
Farasati M., and Shakeri H. 2017. Simulation of water infiltration in the soil using HYDRUS1D software and field data. Journal of Water and Soil Conservation, 25(3):113-128. (In Persian)
Gribb M. M., Forkutsa I., Hansen A., Chandler D. G., and McNamara J. P. 2009. The Effect of various soil hydraulic property esti mates on soil moisture simulations. Vadose Zone Journal, 8(2): 321–331
Huang J., Wu P., and Xining Z. 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 104: 93-102.
Jasper A., Vrugt P., Stauffer H., Wöhling T. H., Bruce A., and Velimir, V. 2008. Inverse modeling of Subsurface flow and transport properties: A review with new developments. Vadose Zone Journal, 7(2): 843–864.
Karimipour A., and Banitalebi G. 2020. Sensitivity analysis of meteorological data in estimating reference evapotranspiration with the minimum data using wavelet-neuro-fuzzy, ANN and ANFIS models. Water and Soil Resources Conservation, 9(3). (In Persian)
Lai J., and Ren L. 2016. Buffer index effects on hydraulic conductivity measurements using numerical simulations of double-ring infiltration. Soil Science Society American Journal, 74: 1526–1536.
Maa Y., Feng S., Sua D., Gao G., and Huo Z. 2010. Modeling water infiltration in a large layered soil column with a modified Green–Ampt model and HYDRUS-1D. Computers and Electronics in Agriculture, 71: 40–47.
Marquardt D W. 1963. An algorithm for least squares estimation of non-linear parameters. Journal of Industrial and Applied Mathematics, 11: 431–441.
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H., and Mohammadi Nodoushan A.R. 2016. Different scenarios for inverse estimation of soil hydraulic parameters from double ring infiltrometer data using HYDRUS 2D/3D. International Agrophysics, 30(2): 203-210.
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H., and Nouri M.R. 2017. Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method. Iranian Journal of Water and Soil Research, 47(4): 829-838. (In Persian)
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H., Panahi M., and Nouri M.R. 2017. Inverse estimation of the soil water retention curve parameters using double-ring infiltration data. Applied Soil Research, 4(2): 26-37. (In Persian)
Minasny B., and McBratney A.B. 2002. The Neuro- m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America journal, 66: 352– 361.
Mousavi dehmurdi A., Ghorbani Dashtaki Sh., and Mashayekhi P. 2018. Evaluation of double-ring infiltrometers method for measuring the vertical infiltration in different soil textures using HYDRUS. Journal of Water and Soil conservation, 25 (3): 241-253. (In Persian)
Mousavi Dehmurdi A., Ghorbani-Dashtaki Sh. , and Mashayekhi P. 2019. Performance of some infiltration models based on obtained data from double-ring and HYDRUS-1D software. Applied Soil Research, 7(2): 182-195.
Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3): 513–522.
Pollalis E. D., and Valiantzas J. D. 2015. Isolation of a 1D infiltration time interval under ring infiltrometers for determining sorptivity and saturated hydraulic conductivity: numerical, theoretical, and experimental approach. Journal of Irrigation and Drainage Engineering, 141(2). 10.1061/ (ASCE) IR.1943- 774.0000796.
Puhlmann H., von Wilpert K., Lukes M., and Dröge W. 2009. Multistep outflow experiments to derive a soil hydraulic database for forest soils. European Journal of Soil Science, 60: 792–806.
Ramos T. B., Šimůnek J., Gonҫalves M. C., Martins J. C., Prazeres A., and Pereira L. S. 2012. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management, 111: 87–104.
Rashid, N.S.A., Askari, M., Tanaka, T., Šimůnek, J. and van Genuchten, M.Th. (2015). Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, (241–242), 306–312.
Russo D., Bresler E., Shani U., and Parker J.C. 1991. Analysis of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology. Water Resources Research, (27): 1361–1373.
Raoof M., and Pilpayeh A. R. 2013. Estimating soil wetting profile under saturated infiltration process by numerical inversion solution in land slopes. Middle-East Journal of Scientific Research, 13(6): 732–736.
Santos F.L., Reis J.L., Martins O.C., Castanheria N.L., and Serralherio R.P. 2003. Comparative assessment of infiltration, runoff and erosion of sprinkler irrigation soils. Biosystems Engineering, 86(3): 355-364.
Schelle H., Iden S.C., Schlüter S., Vogel H. J., and Durner W. 2012. Identification of effective flow processes and properties from virtual soils using inverse modeling. Geophysical Research Abstracts 14.
Richards L. A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1:318–333.
Šimůnek J., and van Genuchten M. Th. 1996. Estimating unsaturated soil hydraulic properties from tension disc data by numerical inversion. Water Resources Research, 32(9): 2683–2696.
Šimůnek J., Kodesová R., and Gribb M. M. 1999. Estimating hysteresis in the soil water retention function from modified cone penetrometer test. Water Resources Research, 35: 1329–1345.
Šimůnek J., Šejna M., and van Genuchten M. Th. 2012. HYDRUS: model use, calibration and validation. American Society of Agricultural and Biological Engineers, 55(4): 1261-1274.
Vanclooster M., Javaux M., and Lambot S. 2007. Recent advances in characterizing flow and transport in unsaturated soil at the core and field. Estudios de la Zona No Saturada del Suelo, 3: 19–35.
Van Genuchten M. Th. 1980. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892–898.
Vereecken H., Weynants M., Javaux M., Pachepsky Y., Schaap M.G., and van Genuchten M.Th. 2010. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properti es: A review. Vadose Zone Journal, 9: 795–820. doi:10.2136/vzj2010.0045
Vogel H. J., Samouelian A., and Ippisch O. 2008. Multi-step and twostep experiments in heterogeneous porous media to evaluate the relevance of dynamic effects. Advances in Water Resources, 3:181– 188.
Wakindiki I.I.C., and Ben-Hur M. 2002. Soil mineralogy and texture effects on crust micromorphology, infiltration, erosion. Soil Science Society of America Journal, 66(3): 897-905.
Wang Q.J., Horton R., and Shao M. A. 2002. Horizontal infiltration method for determining Brooks-Corey model parameters. Soil Science Society of America Journal, 66: 1733–1739. | ||
آمار تعداد مشاهده مقاله: 1,381 تعداد دریافت فایل اصل مقاله: 1,128 |