تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,263,901 |
تعداد دریافت فایل اصل مقاله | 1,895,942 |
تنوع ژنتیکی نهالهای گردوی ایرانی (Juglans regia L.) با استفاده از نشانگرهای SSR | ||
پژوهش و توسعه جنگل | ||
دوره 8، شماره 1، خرداد 1401، صفحه 13-26 اصل مقاله (742.77 K) | ||
نوع مقاله: علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/jfrd.2021.53737.1557 | ||
نویسندگان | ||
آیدا طاهری1؛ نسرین سیدی* 2؛ بابک عبدالهی3؛ قادر میرزاقادری4؛ سولماز نجفی5؛ ;کوروش وحدتی6 | ||
1دانشجوی دکترای جنگلداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران | ||
2دانشیار، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران. | ||
3استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
4دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران | ||
5استادیار، گروه محصولات زراعی، دانشکده کشاورزی، دانشگاه یوزونجو یل وان، وان، ترکیه | ||
6استاد، گروه علوم باغبانی، پردیس ابوریحان، دانشگاه تهران، تهران | ||
چکیده | ||
اولین گام برای شناسایی، حفظ و نگهداری ذخایر توارثی و اساس پژوهشهای ژنتیکی و برنامههای اصلاحی تعیین مقدار تنوع ژنتیکی در مواد گیاهی است. بهکارگیری نشانگرهای مولکولی یکی از ابزارهای بسیار مهم در این زمینه است. در این راستا حفظ تنوع ژنتیکی گیاهان بومی و ارزیابی مقدار تنوع آنها ضروری بهنظر میرسد. برای ارزیابی تنوع ژنتیکی 140 نهال گردوی ایرانی از 20 جفت آغازگر SSR استفاده شد. 20 مکان SSR در مجموع 138 آلل تولید کرد. کمترین و بیشترین تعداد آلل، بهترتیب مربوط به مکانهای WGA69، WGA71 و JRHR211298 (پنج آلل) و WGA202 (نه آلل) بود. کمترین و بیشترین تعداد آلل مؤثر بهترتیب مربوط به مکانهای JRHR211298 و JRHR217037 بود. بیشترین مقدار هتروزیگوتی مشاهدهشده توسط مکان WGA69 تولید شد. همۀ مکانهای SSR در جمعیت مورد بررسی انحراف معنیداری (001/0p≤) از تعادل هاردی-واینبرگ نشان دادند. دندروگرام حاصل از روش Neigbour-joining، 140 نهال گردو را در 5 گروه عمده قرار داد. بررسی ساختار جمعیت با نرمافزار Structure 2.3.1، 2 گروه (2k=) احتمالی را شناسایی کرد. که نتایج هردو تا حد زیادی با هم همخوانی داشتند. اطلاعات حاصل بر اساس ماتریس سهم عضویت افراد و مقدار Fst نشان داد که تمایز قابلملاحظهای بین گروههای احتمالی وجود ندارد. | ||
کلیدواژهها | ||
تجزیه خوشهای؛ تعادل هاردی-واینبرگ؛ نرمافزار Structure؛ هتروزیگوسیتی مشاهده شده | ||
مراجع | ||
Aly, M. A.; Fjellstrom, R. G.; McGranahan, G. H.; Parfitt, D. E., Origin of walnut somatic embryos determined by RFLP and isozyme analysis. HortScience 1992, 27 (1), 61-63. Bayazit, S.; Kazan, K.; Gülbitti, S.; Cevik, V.; Ayanoğlu, H.; Ergül, A., AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey. Scientia Horticulturae 2007, 111 (4), 394-398. Bradbury, P. J.; Zhang, Z.; Kroon, D. E.; Casstevens, T. M.; Ramdoss, Y.; Buckler, E. S., TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23 (19), 2633-2635. Charney, M., Sunflower seeds and their products. Journal of Agricultural & Food Information 2010, 11 (2), 81-89. Cho, G.-T.; Lee, J.-R.; Moon, J.-K.; Yoon, M.-S.; Baek, H.-J.; Kang, J.-H.; Kim, T.-S.; Paek, N.-C., Genetic diversity and population structure of Korean soybean landrace [Glycine max (L.) Merr.]. Journal of Crop Science and Biotechnology 2008, 11 (2), 83-90. Dangl, G. S.; Woeste, K.; Aradhya, M. K.; Koehmstedt, A.; Simon, C.; Potter, D.; Leslie, C. A.; McGranahan, G., Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. Journal of the American Society for Horticultural Science 2005, 130 (3), 348-354. Doyle, J. J., Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13-15. Ebrahimi, A.; Zarei, A.; Lawson, S.; Woeste, K. E.; Smulders, M., Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers. Tree genetics & genomes 2016, 12 (6), 1-12. Eser, E.; Topcu, H.; Kefayati, S.; SÜTYEMEZ, M.; Islam, M. R.; Kafkas, S., Highly polymorphic novel simple sequence repeat markers from Class I repeats in walnut (Juglans regia L.). Turkish Journal of Agriculture and Forestry 2019, 43 (2), 174-183. FAO, F., Available online at: http://faostat. fao. org/site/291/default. aspx. Food and Agriculture Organization 2021. Fornari, B.; Cannata, F.; Spada, M.; Malvolti, M., Allozyme analysis of genetic diversity and differentiation in European and Asiatic walnut (Juglans regia L.) populations. Forest genetics 1999, 6 (2), 115-127. Fornari, B.; Malvolti, M. E.; Taurchini, D.; Fineschi, S.; Beritognolo, I.; McCaglia, E.; Cannata, F., Isozym and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia) populations. Acta Horticulturae 2001, 544, 167-178. Gerard, W.K.; Crocker, T.F.; Bertrand, P.F., Minor Fruits and Nuts in Georgia. University of Georgia 2003, 214 p. Guney, M.; Kafkas, S.; Keles, H.; Zarifikhosroshahi, M.; Gundesli, M. A.; Ercisli, S.; Necas, T.; Bujdoso, G., Genetic diversity among some walnut (Juglans regia L.) genotypes by SSR markers. Sustainability 2021, 13 (12), 6830. Hagh-Jooyan, R. Investigation genetic diversity of tuyserkan walnut population and four walnut collections of country by morphologic and RAPD markers. Ph. D. Thesis in Horticulture Science, Research Sciences Unit of Tehran, 2003. Hassani, D.; Atefi, J.; Haghjooyan, R.; Dastjerdi, R.; Keshavarzi, M.; Mozaffari, M.; Soleimani, A.; Rahmanian, A.; Nematzadeh, F.; Malmir, A., Jamal, a new Persian walnut cultivar for moderate-cold areas of Iran. Seed and PlantImprovement Journal 2012a, 28-1 (3), 525-528. (In Persian) Hassani, D.; Atefi, J.; Haghjooyan, R.; Dastjersi, R.; Keshavarzi, M.; Mozaffari, M. R.; Soleimani, A.; Rahmanian, A. R.; Nematzadeh, F.; Malmir, A., Damavand, a new Persian walnut cultivar as a pollinator for Iranian walnut culivarsand genotypes. Seed and Plant Improvement Journal 2012b, 28-1, 529-531. (In Persian) Karimi, R.; Ershadi, A.; Vahdati, K., Analysis of genetic diversity among some Persian walnut populations of Hamedan Province using SSR markers. Plant Production Technology 2008, 9 (2), 43-53. Mahmoodi, R.; Rahmani, F.; Rezaee, R., Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers. Spanish journal of agricultural research 2013, 11 (2), 431-437. McGranahan, G. H. ; Charles, A. ; Leslie, C. A. ; Philips, H. A. ; Dandaker, A., Walnut Propagation. In: D. Ramos (ed.), Walnut Production Manual 1998, pp, 71-83. Naghavi, M.; Gharayazi, B.; Hosseini, Gh., Molecular Markers. Tehran University Press, 2005; 350 pp. (In Persian) Nassaj Hosseini, M.; Shams-Bakhsh, M. Phylogenetic analysis methods. First Edition, Haghshenass press 2010, 238 pp. (In Persian) Nicese, F.; Hormaza, J.; McGranahan, G., Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica 1998, 101 (2), 199-206. Ovesna, J.; Poláková, K.; Leišová, L., DNA analyses and their applications in plant breeding. Czech Journal of Genetics and Plant Breeding 2002, 38 (1), 29. Peakall, R.; Smouse, P. E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes 2006, 6 (1), 288-295. Potter, D.; Gao, F.; Aiello, G.; Leslie, C.; McGranahan, G., Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut (Juglans regia) cultivars. Journal of the American Society for Horticultural Science 2002, 127 (1), 75-81. Pritchard, J. K.; Stephens, M.; Donnelly, P., Inference of population structure using multilocus genotype data. Genetics 2000, 155 (2), 945-959. Rostami, R.; Seyedi, N.; Yousefzadeh, H., Genetic diversity of wild apple (Malus orientalis Uglitz.) in hyrcanian Forests of Iran by SSR markers. Forest Research and Development 2019, 5 (2), 169-179. Ruiz-Garcia, L.; Lopez-Ortega, G.; Denia, A. F.; Tomas, D. F., Identification of a walnut (Juglans regia L.) germplasm collection and evaluation of their genetic variability by microsatellite markers. Spanish Journal of Agricultural Research 2011, 9 (1), 179-192. Sehgal, D.; Raina, S.N., DNA markers and germplasm resource diagnostics: new perspectives in crop improvement and conservation strategies. In: Arya ID, Arya S (Eds) Utilization of biotechnology in plant sciences. Microsoft Printech (I) Pvt. Ltd, Dehradun, 2008; pp, 39–54. Shamlu, F.; Rezaei, M.; Lawson, S.; Ebrahimi, A.; Biabani, A.; Khan-Ahmadi, A., Genetic diversity of superior Persian walnut genotypes in Azadshahr, Iran. Physiology and Molecular Biology of Plants 2018, 24 (5), 939-949. Taheri, A.; Seyedi, N.; Abdollahi Mandoulakani., SSR-based assessment of genetic diversity in Iranin walnut (Juglans regia L.). Journal of forest and wood product 2016, 68 (2), 277-286. (In Persian) Vahdati, K.; Zareie, N., Evaluation of side-stub and hypocotyle grafting efficiency for walnut propagation in Iran. Acta Horticulturae 2006, 705, 175-179. Vahedi, A. A.; Bijani, A. R.; Khatib-Nia, E., Spatial analysis and long-term dynamics for above-ground biomass of Caspian poplar (Populus caspica Bornm.) in developmental stages of natural stands in Nour Forest Park. Forest Research and Development 2016, 2 (3), 257-271. Woeste, K.; Burns, R.; Rhodes, O.; Michler, C., Thirty polymorphic nuclear microsatellite loci from black walnut. Journal of Heredity 2002, 93, 58-60. | ||
آمار تعداد مشاهده مقاله: 1,569 تعداد دریافت فایل اصل مقاله: 1,095 |