تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,264,066 |
تعداد دریافت فایل اصل مقاله | 1,896,074 |
ارزیابی کمی پویایی کربن و نیتروژن خاک تحت جنگلکاریهای بلندمازو و توسکا ییلاقی | ||
پژوهش و توسعه جنگل | ||
دوره 7، شماره 2، شهریور 1400، صفحه 235-248 اصل مقاله (636.31 K) | ||
نوع مقاله: علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/jfrd.2021.121025 | ||
نویسندگان | ||
محمدکاظم پارساپور1؛ یحیی کوچ* 2؛ سیدمحسن حسینی3؛ سید جلیل علوی2 | ||
1دانشآموخته دکتری علوم جنگل، دانشکدة منابعطبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
2استادیار گروه علوم جنگل، دانشکدة منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
3استاد گروه علوم جنگل، دانشکدة منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
چکیده | ||
با توجه به تخریب جنگلهای هیرکانی طی سالهای گذشته، جنگلکاری توانسته است بهعنوان یک راهکار مناسب بهمنظور احیاء مناطق تخریبشده مورد توجه قرار گیرد. در این میان، گونههای توسکا ییلاقی و بلندمازو در سطوح وسیع مورد جنگلکاری قرار گرفتهاند. روابط کمی عناصر (استوکیومتری)، نقش مهمی در تجزیه ماده آلی با تغییر دسترسی نسبی این عناصر در خاک دارد و شاخص مهمی برای فهم بهتر شرایط میکروبی و مواد آلی در خاک است. هدف از این پژوهش، تعیین اثر نوع گونه درختی در سنین مختلف بر روابط کمی در این جنگلکاریها است. این بررسی در تودههای 15، 20 و 25 ساله جنگلکاریهای شرکت چوب و کاغذ مازندران انجام و در هر یک از عرصهها، تعداد 30 نمونه خاک و لاشبرگ بهروش تصادفی سیستماتیک از عمق 10 سانتیمتری خاک برداشت شدند. براساس نتایج، بیشترین مقادیر روابط کمی کربن به نیتروژن خاک (33/18)، زیتوده میکروبی کربن به نیتروژن (88/15)، کربن به نیتروژن آلی ذرهای (36/10) و کربن به نیتروژن آلی محلول (00/3) در سنین بالاتر بلندمازو مشاهده شدند که اختلاف معنیداری با گونه توسکا ییلاقی داشتند. همچنین، تودههای بلندمازو در سنین بالاتر موجب بهبود روابط کمی کربن و نیتروژن خاک در سالهای آتی جنگلکاری میشوند. | ||
کلیدواژهها | ||
احیاء جنگل؛ زیتوده میکروبی؛ مواد آلی ذرهای؛ مواد آلی محلول؛ نسبت میکروبی | ||
مراجع | ||
Bremner, J. M.; Mulvaney. C., Nitrogen‐total. In L. Page, Miller, R. H.; Keeney, D., (Eds.), Methods of soil analysis. Part 2. Madison, WI: American Society of Agronomy, Agron, 1982. Pp, 595– 624.
Brookes, P.; Landman, A.; Pruden, G.; Jenkinson, D., Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil biology and biochemistry 1985, 17 (6), 837-842.
Chase, P.; Singh, O., Soil nutrients and fertility in three traditional land use systems of Khonoma, Nagaland, India. Resources and Environment 2014, 4 (4), 181-189.
Chen, T.-H.; Chiu, C.-Y.; Tian, G., Seasonal dynamics of soil microbial biomass in coastal sand dune forest. Pedobiologia 2005, 49 (6), 645-653.
Compton, J. E.; Boone, R. D., Long‐term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 2000, 81 (8), 2314-2330.
Devi, A. S.; Yadava, P., Wood and leaf litter decomposition of Dipterocarpus tuberculatus Roxb. in a tropical deciduous forest of Manipur. Current Science 2007, 93.
Gao, Y.; Cheng, J.; Ma, Z.; Zhao, Y.; Su, J., Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Annals of Forest Science 2014, 71 (4), 427-435.
Gorobtsova, O.; Gedgafova, F.; Uligova, T.; Tembotov, R. K., Ecophysiological indicators of microbial biomass status in chernozem soils of the Central Caucasus (in the territory of Kabardino-Balkaria with the Terek variant of altitudinal zonation). Russian journal of ecology 2016, 47 (1), 19-25.
Hashemi, S.A., Hojati, S.M., HOSEINI, N.S., Asadyan, M. and Tafazoli, M., 2017. Studying soil physical, chemical and net Nitrogen mineralization in plantation and natural stands in Darabkola Forest (Sari). Journal of Forest Research and Development, 3(2):119-132. (In Persian).
Haynes, R., Labile organic matter fractions as centralcomponents of the quality of agricultural soils: anoverview. Adv Agron 2005, 5, 221-268.
Heuck, C.; Spohn, M., Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality. Biogeochemistry 2016, 131 (1), 229-242.
Hoogmoed, M.; Cunningham, S. C.; Baker, P. J.; Beringer, J.; Cavagnaro, T., Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agriculture, Ecosystems & Environment 2014, 188, 80-84.
Kooch, Y., Response of earthworms’ ecological groups to decay degree of dead trees (case study: Sardabrood forest of Chalous, Iran). Eur J Exp Biol 2012, 2, 532-538.
Kooch, Y.; Tavakoli, M.; Akbarinia, M., Microbial/biochemical indicators showing perceptible deterioration in the topsoil due to deforestation. Ecol. Indic. 2018, 91, 84-91.
Liu, X.; Ma, J.; Ma, Z.-W.; Li, L.-H., Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. Catena 2017, 150, 146-153.
Maharjan, M.; Sanaullah, M.; Razavi, B. S.; Kuzyakov, Y., Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Applied Soil Ecology 2017, 113, 22-28.
McGee, K. M.; Eaton, W. D.; Shokralla, S.; Hajibabaei, M., Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a Costa Rican conservation area. Microbial ecology 2019, 77 (1), 148-167.
Nelson, D.W. & Sommers, L, 1982. Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2, Chemical and microbiological properties, (methodsofsoilan2), pp. 539-579.
Nilsson, M.-C.; Wardle, D. A.; Dahlberg, A., Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 1999, 16-26.
Parsapour, M. K.; Kooch, Y.; Hosseini, S. M.; Alavi, S. J., Litter and topsoil in Alnus subcordata plantation on former degraded natural forest land: a synthesis of age-sequence. Soil and Tillage Research 2018, 179, 1-10.
Pitman, R.; Benham, S.; Poole, J., A chronosequence study of soil nutrient status under oak and Corsican pine with Ellenberg assessed ground vegetation changes. Forestry 2014, 87 (2), 287-300.
Ren, C.; Zhao, F.; Kang, D.; Yang, G.; Han, X.; Tong, X.; Feng, Y.; Ren, G., Linkages of C: N: P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management 2016, 376, 59-66.
Ribeiro, C.; Madeira, M.; Araújo, M., Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. Forest Ecology and Management 2002, 171 (1-2), 31-41.
Smolander, A.; Kitunen, V., Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology and Biochemistry 2002, 34 (5), 651-660.
von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B., SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 2007, 39 (9), 2183-2207.
Wang, Q.; Wang, S., Soil organic matter under different forest types in Southern China. Geoderma 2007, 142 (3-4), 349-356.
Waring, B. G.; Becknell, J. M.; Powers, J. S., Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia 2015, 178 (3), 887-897.
Wen, L.; Lei, P.; Xiang, W.; Yan, W.; Liu, S., Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management 2014, 328, 150-158.
Yang, K.; Zhu, J.-J.; Yan, Q.-L.; Sun, O. J., Changes in soil P chemistry as affected by conversion of natural secondary forests to larch plantations. Forest Ecology and Management 2010, 260 (3), 422-428.
Yousefi, A.; Darvishi, L., Soil changes induced by hardwood and coniferous tree plantations establishment: Comparison with natural forest soil at Berenjestanak lowland forest in north of Iran. International Journal of Advanced Biological and Biomedical Research 2013, 1 (4), 432-449.
Yu, Z.; Wang, M.; Huang, Z.; Lin, T. C.; Vadeboncoeur, M. A.; Searle, E. B.; Chen, H. Y., Temporal changes in soil C‐N‐P stoichiometry over the past 60 years across subtropical China. Global change biology 2018, 24 (3), 1308-1320.
Zhang, Q.; Yang, J.; Koide, R. T.; Li, T.; Yang, H.; Chu, J., A meta-analysis of soil microbial biomass levels from established tree plantations over various land uses, climates and plant communities. Catena 2017, 150, 256-260.
Zhao, X.; Li, F.; Zhang, W.; Ai, Z.; Shen, H.; Liu, X.; Cao, J.; Manevski, K., Soil respiration at different stand ages (5, 10, and 20/30 years) in coniferous (Pinus tabulaeformis Carrière) and deciduous (Populus davidiana Dode) plantations in a sandstorm source area. Forests 2016, 7 (8), 153.
Zheng, H.; Ouyang, Z.; Wang, X.; Fang, Z.; Zhao, T.; Miao, H., Effects of regenerating forest cover on soil microbial communities: a case study in hilly red soil region, Southern China. Forest Ecology and Management 2005, 217 (2-3), 244-254.
Zhu, L.; Henze, D.; Bash, J.; Jeong, G.-R.; Cady-Pereira, K.; Shephard, M.; Luo, M.; Paulot, F.; Capps, S., Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmospheric Chemistry and Physics 2015, 15 (22), 12823-12843. | ||
آمار تعداد مشاهده مقاله: 1,623 تعداد دریافت فایل اصل مقاله: 1,027 |