تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,263,937 |
تعداد دریافت فایل اصل مقاله | 1,895,996 |
سینتیک واجذب کادمیم در حضور کمپوست پوست نرم بادام و بیوچار آن در خاک آهکی | ||
تحقیقات کاربردی خاک | ||
مقاله 1، دوره 8، شماره 3، آذر 1399، صفحه 68-82 اصل مقاله (1.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
زهرا دیانت مهارلویی* 1؛ مجید فکری2 | ||
1دانشکده کشاورزی، دانشگاه شهید باهنر کرمان ، بخش علوم و مهندسی خاک، کرمان، ایران. | ||
2استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه شهید باهنر کرمان | ||
چکیده | ||
کادمیم یکی از رایجترین و خطرناکترین آلودگیهای محیط زیست میباشد. اثر کمپوست پوست نرم بادام و بیوچار آن برسینتیک واجذب کادمیم در یک خاک آهکی در مزرعه دانشکده کشاورزی شهید باهنر کرمان بررسی شد. به همین منظور از کمپوست و بیوچار پوست نرم بادام در سه سطح (صفر، 2 و 4 درصد وزنی) استفاده شد که به خاک آهکی آلوده با سطوح صفر، 40 و 80 میلیگرم بر کیلوگرم کادمیم افزوده گردید. نمونهبرداری از خاکهای تیمار شده، 45 و 90 روز بعد از آلوده شدن خاکها با کادمیم، انجام شد. در دورههای زمانی مختلف از 5 تا 2880 دقیقه به وسیله EDTA عصارهگیری شدند و غلظت کادمیم موجود در نمونهها تعیین گردید. نتایج نشان داد که کاربرد کمپوست و بیوچار پوست بادام باعث کاهش واجذب کادمیم نسبت به تیمار شاهد شد، کمترین میزان واجذب کادمیم در خاک، در سطح 4 درصد وزنی بیوچار و کمپوست رخ داد، در حالیکه بیوچار بیشترین کاهش را در میزان واجذب کادمیم در مقایسه با کمپوست داشت. براساس نتایج حاصل از آزمایش، واجذب کادمیم در تمامی تیمارها در زمانهای اولیه بیشترین مقدار بود و با گذشت زمان کاهش یافت. به عبارت دیگر 50 درصد واجذب کادمیوم در 2 ساعت اولیه رخ داد. در نمونهبرداریهای 90 روزه در مقایسه با 45 روزه، واجذب کادمیم از خاک بیشترین کاهش را نشان داد. براساس ضریب تبیین و خطای استاندارد بهترین معادله تابع توانی به عنوان بهترین معادله پیشبینی کننده روند سینتیک واجذب کادمیم در خاک مورد مطالعه میباشد. | ||
کلیدواژهها | ||
پوست نرم بادام؛ سینتیک واجذبی؛ کادمیم؛ کمپوست؛ معادلات سینتیکی | ||
مراجع | ||
Akoto O., Ephraim J.H., and Darko G. 2009. Heavy metals pollution in surface soils in the vicinity of abundant railway servicing workshop in kumasi, Ghana. International Journal of Environmental Research, 2: 359-364.
Allison L.E., and Moodie C.D. 1965. Carbonate. In: Page C.A. Black (Ed.), Methods of Soil Analysis, part 2, American. Society, Agronomy, Madison. WI, pp. 1379-1396.
Bremner J.M. 1996. Nitrogen Total. In: Page D.L. Sparks et al., (Eds), Methods of Soil Analysis, part 3-American, Society, Agronomy, Madison. WI, pp. 1085 – 1122
Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464-465.
Cao X., Ma L., Liang Y., Gao B., and Harris W. 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science and Technology, 45: 4884-4889.
Chapman H.D., and Pratt P.F. 1961. Method of Analysis for Soils, plants and waters, University of California, Division of agricultural Sciences, pp. 60- 68.
Chapman H.D., and Pratt P.F. 1965. Methods of Analysis for Soils, plants, and waters, University of California, DivisionofAgricultureScience, pp. 56-61.
Dang Y.P., Dalal R.C., Edwards D.G., and Tiller K.G. 1994. Kinetics of zinc desorption from vertisols. Soil Science Society of America Journal, 58: 1392-1399.
Esfandbod M., Adhami E., Rashti M.R., and Esfandbod M. 2010. Kinetics of cadmium desorption from some soils of Iran. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World, Australia, Brisbane, 235p.
Ghasemi-Fasaei R., and Jarrah M. 2013. Adsorption kinetics of cadmium and zinc as influenced by some calcareous soil properties. International journal of agriculture and crop sciences, 5: 479-483.
Gul S., Whalen J.K., Thomas B.W., Sachdeva V., and Deng H. 2015. Physicochemical properties and microbial responses in biochar amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206: 46-59.
Hall G., Woodborne S., and Scholes M. 2008. Stable carbon isotope rations from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology, 247: 384-400.
Helmke P.A., and Sparks D.L. 1996. Lithium, sodium, potassium, rubidium and cesium. In: D.L. Sparks (Ed.), Methods of Soil Analysis. Part 3: Chemical properties. Soil Science Society of America, Madison, Wisconsin, pp. 551-574.
Jalali M., and Rostaii L. 2011. Cadmium distribution in plant residues amended calcareous soils as a function of incubation time. Archives of Agronomy and Soil Science, 57: 137-148.
Kandpal G., Srivastava P.C., and Ram B. 2005. Kinetics of desorption of heavy metals from polluted soils: Influence of soil type and metal source, Water, Air, and Soil Pollution, 161: 353-363.
Karaca A. 2004. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil, Geoderma, 122: 297-303.
Khan M.S., Zaidi, A. Oves, M. and Wani P.A. 2008. Heavy metal toxicity to legumes. In: Samuel EB, William CW (Eds) Heavy metal pollution. Nova Science, Hauppauge, pp. 197–225.
Kim H.S., Kim K.R., Kim H.J., Yoon J.H., Yang J.E., Ok Y.S., Owens G., and Kim K.H. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Science, 74:1249–1259.
Krishnamurti G.S.R., Huang P.M., and Kozak L.M. 1999. Sorption and desorption kinetics of cadmium from soils: Influence of phosphate. Journal of Soil Science, 164: 888-898.
Lehmann J., and Joseph S. 2012. Biochar for environmental management: science and technology, (Eds.). Routledge, 944p.
Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
Loganathan P., Vigneswaran S., Kandasamy J., and Naidu R. 2012. Cadmium sorption and desorption in soils: a review. Critical Reviews in Environmental Science and Technology, 42: 489-533.
Mendez A., Paz-Ferreiro J., Araujo F., and Gascó G. 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. Journal of Analytical and Applied Pyrolysis, 107: 46-52.
Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. 3rd Ed. In: Sparks, D.L., et al., (Ed). Methods of Soil Analysis. Part 3- chemical methods and microbiological properties. Soil Science of America and American Society of Agronomy, Madison, Wisconsin. pp. 961-1010.
Olsen S.R.C., Cole V., Watanabe F.S., and Dean L.A. 1954. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA. Cir, US Govern printing office, Washing ton, DC, 939 p.
Pellera F.M., and Gidarakos E. 2015. Effect of dried olive pomace–derived biochar on the mobility of cadmium and nickel in soil. Journal of Environmental Chemical Engineering, 87: 38-45.
Rhoades J.D., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., and Sumner M.E. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis. Part 3-Chemical Methods, pp. 417-435.
Song W., and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145.
Thomas G.W. 1996. Soil pH and soil acidity. In: D.L. Sparks et al., (Eds) Methods of Soil Analysis. part 3-American Society of Agronomy., Madison. WI, pp. 475- 490.
Yuan J.H., Xu R.K., and Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102:3488–3497.
Zhang X., Wang H., He L., Lu K., Sarmah A., Li J., Bolan N.S., Pei J., and Huang H. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science Pollution Research, 20:8472–8483. | ||
آمار تعداد مشاهده مقاله: 1,544 تعداد دریافت فایل اصل مقاله: 1,182 |