تعداد نشریات | 13 |
تعداد شمارهها | 144 |
تعداد مقالات | 1,440 |
تعداد مشاهده مقاله | 2,163,382 |
تعداد دریافت فایل اصل مقاله | 1,798,064 |
برآورد رویش دهساله راش (Fagus orientalis Lipsky) با استفاده از مدل شبکههای عصبی مصنوعی و رگرسیون خطی چندگانه در جنگلهای رامسر | ||
پژوهش و توسعه جنگل | ||
مقاله 2، دوره 6، شماره 3، آذر 1399، صفحه 381-394 اصل مقاله (1.15 M) | ||
نوع مقاله: علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/jfrd.2020.120871 | ||
نویسندگان | ||
محمود بیات* 1؛ مجید حسنی2؛ سحر حیدری مستعلی3 | ||
1استادیار پژوهش، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
2کارشناس ارشد، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
3دانشجوی دکتری محیط زیست، دانشکده منابع طبیعی، دانشگاه تهران، ایران | ||
چکیده | ||
در این تحقیق که در جنگلهای رامسر در استان مازندران انجام شد رویش جنگل به کمک شبکه عصبی مصنوعی برآورد و با رویش واقعی جنگل که بهطور مستقیم و از اندازهگیری در 20 قطعهنمونه ثابت یک هکتاری که در سالهای 1381 و 1391 از آماربرداری صددرصد محاسبه شده بود، مقایسه شد. رویش حجمی سالانه راش بهترتیب 52/4 و 35/4 سیلو در هکتار برای رویش به طریق مستقیم و رویش برآوردی به روش شبکه عصبی مصنوعی بود. سپس تحلیل رگرسیون، به روش گامبهگام انجام و بهترین مدلها گزینش شد. پس از انتخاب بهترین مدل، بررسی تحلیل حساسیت ورودیها انجام شد. نتایج نشان داد شبکه عصبی با دقت مناسبی میتواند رویش و مقدار برش سالیانه را برآورد کند. مقدار R2، RMSE و MAE بهترتیب 75/0، 17 و 60/13 در شبکه پرسپترون چندلایه نشان داد که شبکه عصبی MLP بیشترین دقت در برآورد را دارد. در تحلیل رگرسیون خطی چندگانه هم ضرایب تشخیص بهترتیب 610/0 و 679/0 و خطای RMS مقادیر 5/1 و 42/1 برای مدل اول و دوم بهدست آمد. نتایج مربوط به تحلیل حساسیت ورودیها نشان داد که عوامل حجم، جهت، قطر برابرسینه و ارتفاع درخت بیشترین تأثیر را در مدلسازی تعیین رویش دارند. مقایسه مدلها نشان داد استفاده از شبکه عصبی میتواند مقدار رویش را با دقت مناسبی پیشبینی کند. | ||
کلیدواژهها | ||
پرسپترون چندلایه؛ تحلیل حساسیت؛ رگرسیون؛ رویش حجمی؛ مدلسازی | ||
مراجع | ||
- Amini, M., M. Namiranian, Kh. Sagheb Talebi & R. Amini, 2009. Investigation on the homogenity of diameter increment models in Fagus orientalis L. trees, Journal of Wood and Forest Science and Technology, 16(4): 1-23. (In Persian)
- Anonymos, 2001. Safarood forestry plan. Technical office of the forests, grasslands and Watershed Department, 285 p.
- Bayat, M., M. Ghorbanpour, R. Zare, A. Jaafari & B. Thai Pham, 2019b. Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran, Computers and Electronics in Agriculture, 164: 1-7.
- Bayat, M., M. Namiranian, M. Omid, A. Rashidi & S. Babaei, 2016. Applicability of artificial neural network for estimating the forest growing stock, Iranian Journal of Forest and Poplar Research, 24(2): 214-226. (In Persian)
- Bayat, M., A. Shekarchian & M. Omid, 2018. Predicting and assessing the tree species survival and determining Physiographic factors affecting on it in Mazandaran province Forests using artificial neural networks, Journal of Natural Environment, 70(4): 771-782.
- Bayat, M., P. Thanh Noi, R. Zare & D. Tien Bui, 2019a. A semi-empirical approach based on genetic programming for the study of biophysical controls on diameter-growth of Fagus orientalis in Northern Iran, Remote Sensing, 11(14): 1-18.
- Bayati, H. & A. Najafi, 2013. Comparison of artificial neural network üerformance with regression analysis in estimating lumber volume, Forest and wood products, 66(2): 177-191. (In Persian)
- Bednarz, Z., 2001. Dendrochronological evidence in Beech (Fagus sylvatica L.) of May late forest in the Polish Tatra national park, poster abstract 123, conference "Tree rings and people" Sep. 22-26 2001, Swiitzerland.
- Correia Vieira, G., A. Ribeiro de Mendonça, G. Fernandes da Silva, S. Sara Zanetti, M. Marques da Silva & A. Rosa dos Santos, 2017. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence, Science of the Total Environmen, 619: 1473-1481
- Dittmar, C., 2001. Influence of climate on tree rings of common beech (Fagus sylvatica L.), poster abstract 7, conference "Tree rings and people" Sep 22-26 2001, Swiitzerland.
- Fakur, E., J. Alavi, M. Tabari & K. Ahmadi, 2017. Estimating the beech forest site productivity in Hyrcanian forest using classification and regression tree algorithm, Journal of Forest and Wood Productions, 70(2): 221-229. (In Persian)
- Hatami, N., M. Moayeri & H. Heidari, 2013. Volume increment determination of forest stand types in the district one of Dr Bahramnia forest management plan, Gorgan, Iranian Forests EcologyJournal, 2(3): 657-69. (In Persian)
- Jalilvand, H., Gh. Jalali, M. Akbarnia, M. Tabari & M. Hosseini, 2001. Growth response to eight hardwood species to current and past climatic variations using regression models, Journal of Agricultural. Science and Technology, 3(3): 209-225.
- Karamdost meryan, B., A. Eslam bonyad & F. Tvankar, 2019. Effect of harvest intensity on volume growth of mixed beech stands in Asalem Nav forests, Journal of Forest Research and Development, 4(4): 533-547. (In Persian)
- Köhl, M., C. Scott & A. Zingg, 1995. Evaluation of permanent sample surveys for growth and yield studies: a Swiss example, Forest Ecology and Management, 71(3): 187-194.
- Lacerda, T., C. D. Cabacinha, A. Araújo Júnior, R. Dourado Maia, K. Wesley & S. Lacerda, 2017. Artificial neural networks for estimating tree volume in the Brazilian savanna, CERNE, 23(4): 483-491.
- Ozçelik, R., J. M. Diamantopoulou, J. R. Brooks & H. V. Wiant Jr, 2010. Estimating tree bole volume using artificial neural network models for four species in Turkey, Journal of Environmental Management, 91(3): 742-753.
- Parsapazhouh, D., 1976. Investigation on the physical quality of fagus orientalis in different sites, Iranian Journal of Natural Resources, 34: 21-32. (In Persian)
- Resaneh, Y., M. H. Moshtagh Kahnamooyee & P. Salehi, 2001. Investigation of quality and qyantity of north forest, P 55-80. In: Proceedings of north forests management and stable development conference, Ramsar, Iran. (In Persian)
- Sajjadi, M., 2016. Provide vegetative models of beech species using artificial neural networks. Master's thesis. Faculty of Natural Resources. University of Tehran. Karaj, Iran. (In Persian)
- Sohrabi, H., S. M. Hosseini & M. Zobeiri, 2010. Application of Digital Surface Model for estimating forest stand volume using Regression methods and Artificial Neural Network, Iranian Journal of Natural Resources, 64(3): 223-233. (In Persian)
- Soltani, S., S. Sardari, M. Sheykhpour & S. Mousavi, 2010. Understanding the principles and applications of artificial neural networks. Scientific and Cultural Organization of Nas, Tehran, 216p. (In Persian)
- Vafaei, S., M. Pourhashemi, M. Pirbavaghar & E. Jafari, 2016. Applying artificial neural network and multiple linear regression models for estimation of forest density in Marivan forests, Iranian Journal of Forest, 7(4): 539-555. (In Persian)
- Vahedi, A., A. Mataj & R. Akhavan, 2017. Modeling the commercial volume of trees in mixed beech stands of Hyrcanian forests through artificial neural network, Forest and Wood Products, 70(1): 49-60. (In Persian) | ||
آمار تعداد مشاهده مقاله: 1,418 تعداد دریافت فایل اصل مقاله: 1,010 |