تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,263,919 |
تعداد دریافت فایل اصل مقاله | 1,895,976 |
تأثیر قارچ میکوریز و ریزوباکتری محرک رشد بر فعالیت آنزیمهای آنتیاکسیدانی نهال استبرق تحت تنش خشکی | ||
پژوهش و توسعه جنگل | ||
مقاله 8، دوره 6، شماره 3، آذر 1399، صفحه 477-489 اصل مقاله (1.27 M) | ||
نوع مقاله: علمی - پژوهشی | ||
شناسه دیجیتال (DOI): 10.30466/jfrd.2020.120866 | ||
نویسندگان | ||
احسان قنبری1؛ امید فتحی زاده* 2؛ مسعود طبری کوچکسرایی3 | ||
1دکترای جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، نور، ایران | ||
2استادیار گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز، اهر، ایران | ||
3استاد گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، نور، ایران | ||
چکیده | ||
این پژوهش با هدف بررسی فعالیت آنزیمهای آنتیاکسیدان مانند کاتالاز، سوپراکسیددیسموتاز، آسکوربات و پراکسیداز در نهال استبرق (Calotropis procera Ait) تلقیح یافته با میکروارگانیسمهای میکوریزی و ریزوباکتریایی تحت تأثیر تنش خشکی در یک شرایط گلخانهای طی یک دوره ششماهه انجام شد. آزمایش در سه سطح تلقیحی (شاهد یا عدم تلقیح، قارچ میکوریز رﯾﺰوﻓﺎﮔﻮس اﯾﺮﮔﻮﻻرﯾﺲ و ریزوباکتریایی سودوموناس پوتیدا) و با سه سطح تنش خشکی دورهای (سه، شش و 12 روز آبیاری) در قالب طرح پایه کاملاً تصادفی با سه تکرار انجام شد. نتایج نشان داد که تلقیح میکوریز و ریزوباکتریایی سودوموناس تحت شرایط خشکی بهطور معنیداری فعالیت آنزیمهای آنتیاکسیدان را افزایش داد. بیشترین فعالیت آنزیم کاتالاز (57/1 واحد آنزیمی بر میلیگرم وزن تر)، سوپراکسید دیسموتاز (43/17 واحد آنزیمی بر میلیگرم وزن تر) و آسکوربات پراکسیداز (56/4 واحد آنزیمی بر میلیگرم وزن تر) در نهالهای میکوریزی تحت تنش خشکی 12 روز و همچنین بیشترین مقدار فعالیت آنزیم پراکسیداز در نهال میکوریزی (96/11 واحد آنزیمی بر میلیگرم وزن تر) و ریزوباکتریایی (9/12 واحد آنزیمی بر میلیگرم وزن تر) در شرایط خشکی 12 روز مشاهده شد. | ||
کلیدواژهها | ||
تنش اکسیداتیو؛ سودوموناس؛ رﯾﺰوﻓﺎﮔﻮس اﯾﺮﮔﻮﻻرﯾﺲ؛ گونههای اکسیژن فعال | ||
مراجع | ||
- Alguacil, M. M., J. A. Hernandez, F. Caravaca, B. Portillo & A. Roldan, 2003. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil, Physiologia Plantarum, 118(4): 562-570.
- Auge, R. M., 2001. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis, Mycorrhiza, 11(1): 3-42.
- Auge, R. M., D. M. Sylvia, S. Park, B. Buttery, R. A. M. Saxton, J. L. Moore & K. Cho. 2004. Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components, Canadian Journal of Botany, 82(4): 503-514.
- Augé, R. M., J. L. Moore, K. Cho, J. C. Stutz, D. M. Sylvia, A.K. Al-Agely & A. M. Saxton, 2003. Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae, Journal of Plant Physiology, 160(10): 1147-1156.
- Bahmani, M., Gh. Jalali, A. Asgharzadeh & M. Tabari, 2015. Efficiency of Rhizobacteria inoculation of Pseudomonus putida 169 on the improvement of some vegetative traits of Calotropis procera Ait under drought stress, Journal of Soil Biology, 3(2): 107-117 (In Persian).
- Bahmani, M., M. Modaresi & M. Mohamadi, 2018. Comparison on efficiency of arbuscolar mycorrhizal fungus and plant growth promotion rhizobacterium inoculum on nutrition elements concentration and seedling quality indices of Calotropis Procera, Journal of Desert Management, 6(11): 51-64 (In Persian).
- Barros, J., H. Serk, I. Granlund & E. Pesquet, 2015. The cell biology of lignification in higher plants, Annals of Botany, 115(7): 1053-1074.
- Bartels, D., 2001. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance, Trends in Plant Science, 6(7): 284-286.
- Dehghan, S., K. S. M. Tabari & G. Jalali, 2016. The effect of mycorrhizal fungi and growth-promoting rhizobacteria on the activity of antioxidant enzymes of Calotrope Seedlings under drought Stress, Journal of Forest Research and Development, 2(3): 289-299 (In Persian).
- Fitter, A. H., 1988. Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought, Journal of Experimental Botany, 39(5): 595-603.
- Fourquet, S., M. E. Huang, B. D’Autreaux & M. B. Toledano, 2008. The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling, Antioxidants & Redox Signaling, 10(9): 1565-1576.
- Fu, Q., L. Chen, N. Ding & B. Guo, 2010. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress, Agricultural Water Management, 97(12): 1994-2000.
- Gururani, M. A., C. P. Upadhyaya, V. Baskar, J. Venkatesh, A. Nookaraju & S. W. Park, 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS- Scavenging enzymes and improved photosynthetic performance, Journal of Plant Growth Regulation, 32(2): 245-258.
- Jia, J., S. Li, X. Cao, H. Li, W. Shi, A. Polle, T. Liu, C. Peng & Z. Luo, 2015. Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought, Physiologia Plantarum, 157(1): 38-53.
- Jin, R., H. Shi, C. Han, B. Zhong, Q. Wang & Z. Chan, 2015. Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration, Scientia Horticulturae, 194: 215-221.
- Kohler, J., F. Caravaca, L. Carrasco & A. Roldan, 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilisation and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions, Soil Use and Management, 22(3): 298-304.
- Kohler, J., J. A. Hernandez, F. Caravaca & A. Roldan, 2008. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants, Functional Plant Biology, 35(2): 141-151.
- Liu, B., M. Li, L. Cheng, D. Liang, Y. Zou & F. Ma, 2012. Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress, Plant Growth Regulation, 67(3): 247-256.
- Ouledali, S., M. Ennajeh, A. Zrig, S. Gianinazzi & H. Khemira, 2018. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea), Acta Physiologiae Plantarum, 40(5): 81-92.
- Ozkur, O., F. Ozdemir, M. Bor & I. Turkan, 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought, Environmental and Experimental Botany, 66(3): 487-492.
- Pilevar, B., M. Bahmani, Y. Yousefi, A. Asgharzadeh & D. Kartolinezhad, 2015. Efficiency of arbuscular mycorrhizal fungus on Calotropis procera Ait.gas exchange, Proceedings of Fourteenth Congress of Soil Science - Chemistry fertility and soil nutrition (In Persian).
- Pitman, M. G. & A. Lauchli, 2002. Global impact of salinity and agricultural ecosystems, In: Salinity: Environment-Plants Molecules, 3-20.
- Porcel, R., J. M. Barea & J. M. Ruiz-Lozano, 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence, New Phytologist, 157(1): 135-143.
- Requena, N., E. Perez-Solıs, C. Azcon-Aguilar, P. Jeffries & J. M. Barea, 2001. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems, Applied and Environmental Microbiology, 67(2): 495-498.
- Ruiz-Lozano, J. M., 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies, Mycorrhiza, 13(6): 309-317.
- Ruiz-Lozano, J. M., R. Azcon & J. M. Palma, 1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress, New Phytologist, 134(2): 327-333.
- Ruiz-Sanchez, M., E. Armada, Y. Munoz, I. E. G. de Salamone, R. Aroca, J. M. Ruiz-Lozano & R. Azcn, 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions, Journal of Plant Physiology, 168(10): 1031-1037.
- Saikia, R., R. Kumar, D. K. Arora, D. K. Gogoi & P. Azad, 2006. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases, Folia Microbiologica, 51(5): 375-380.
- Samancioglu, A., E. Yildirim, M. Turan, R. Kotan, U. Sahin & R. Kul, 2016. Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of Cabbage Seedlings by Plant Growth Promoting Rhizobacteria, International Journal of Agriculture & Biology, 18(5): 948-956.
- Sanchen-Blanco, M. J., T. Ferrandez, M. A. Morales, A. Morte & J. Alarcon, 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants with Glomus deserticola under drought conditions, Journal of Plant Physiology, 161(6): 675-682.
- Sandhya, V., Sk. Z. Ali, G. Minakshi, R. Gopal & B. Venkateswarlu, 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress, Plant Growth Regul, 62(1): 21-30.
- Shi, H., T. Ye, B. Song, X. Qi & Z. Chan, 2015. Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance, Acta Physiologiae Plantarum, 37(6): 1-12.
- Talbi, S., M. C. Romero-Puertas, A. Hernández, L. Terrón, A. Ferchichi & L. M. Sandalio, 2015. Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences, Environmental and Experimental Botany, 111: 114-126.
- Verma, P., R. Saxena & R. S. Tomar, 2016. Rhizobacteria: A Promising Tool for Drought Tolerance in Crop Plants, International Journal of Pharma & Bio Sciences, 21: 116-125.
- Wu, M., W. H. Zhang, C. Ma & J. Y. Zhou, 2013. Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings, Russian Journal of Plant Physiology, 60(5): 681-692.
- Wu, Q. S., R. X. Xia, Y. N. Zou & G. Y. Wang, 2007. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress, Acta Physiologiae Plantarum, 29(6): 543-553.
- Zhang, F., Y. N. Zou & Q. S. Wu, 2018. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress, Scientia Horticulturae, 229: 132-136. | ||
آمار تعداد مشاهده مقاله: 1,558 تعداد دریافت فایل اصل مقاله: 1,129 |