تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,263,939 |
تعداد دریافت فایل اصل مقاله | 1,895,998 |
بررسی تأثیر تفکیک مکانی مدل رقومی ارتفاع (DEM) بر تحلیل خاک-زمیننما (مطالعه موردی حوضه رکعت ایذه، استان خوزستان) | ||
تحقیقات کاربردی خاک | ||
مقاله 10، دوره 8، شماره 1، اردیبهشت 1399، صفحه 121-135 اصل مقاله (936.13 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
جواد خنیفر1؛ عطااله خادم الرسول* 2؛ هادی عامری خواه3 | ||
1گروه خاکشناسی دانشگاه شهید چمران اهواز | ||
2هیئت علمی- دانشگاه شهید چمران اهواز | ||
3مربی گروه خاکشناسی دانشگاه شهید چمران اهواز | ||
چکیده | ||
از مهمترین عوامل تأثیرگذار در تحلیل خاک-زمیننما، تفکیک مکانی مدل رقومی ارتفاع (DEM) است. در این مطالعه، تأثیر تفکیک مکانی بر پارامترهای زمینی و مدلسازی ویژگیهای خاک بررسی شد. برای انجام این پژوهش، شش پارامتر زمینی (ارتفاع، گرادیان شیب، جهت شیب، انحناء حداقل، منطقهی بالادست و شاخص انتقال رسوب) از پنج تفکیک مکانی متفاوت (10، 30 (مبنا)، 60، 90 و 120 متر) استخراج شدند و برای مدلسازی ویژگیهای خاک (بافت خاک، پتاسیم، فسفر، pH، EC و عمق خاک) مورداستفاده قرار گرفتند. بررسی معنیداری اختلاف بین میانگینهای هرکدام از پارامترهای زمینی در بین تفکیکهای مکانی مختلف، با استفاده از آزمون کروسکال- والیس صورت پذیرفت. مدلسازی به روش رگرسیون خطی چندگانه و انتخاب بهترین مدل در هر تفکیک مکانی بر اساس شاخص AICC انجام گردید. نتایج نشان میدهند که با درشتتر شدن تفکیک مکانی نسبت به DEM مبنا، مقادیر میانگین گرادیان شیب (G)، شاخص انتقال رسوب (STI) و محدودهی مقادیر انحناء حداقل (Cmin) کاهشیافته ولیکن مقادیر میانگین و حداقل منطقهی بالادست (UP) افزایش یافتند. شاخصهای آماری پارامتر ارتفاع، حساسیت کمی را نسبت به تغییرات تفکیک مکانی نشان دادند. تغییرات میانگین و حداکثر جهت شیب در طول تفکیکهای مکانی مختلف فاقد روند مشخصی است. میانگین تمامی پارامترهای زمینی به غیر از انحناء حداقل (Cmin) و منطقهی بالادست (UP) در بین هیچکدام از تفکیکهای مکانی دارای اختلاف معنیداری نمیباشند. با تغییر در تفکیک مکانی DEM، بهترین ترکیب پارامتری زمینی برای مدلسازی ویژگیهای خاک و مقادیر دو معیار AICC و R2adj این ترکیبات تغییر میکنند. نتایج این پژوهش نشان میدهد که برای یک منطقه که دارای تنوع بالا در شرایط ژئومورفولوژی است، این امکان وجود ندارد که در آن یک تفکیک مکانی مشخص را برای مدلسازی تمامی ویژگیهای خاک، مناسب دانست. | ||
کلیدواژهها | ||
شاخص انتقال رسوب؛ ژئومورفومتری؛ مدل رقومی ارتفاع؛ معیار اطلاعات آکائیک تصحیح شده (AICC)؛ وضوح مکانی بهینه | ||
مراجع | ||
Akaike H. 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19 (6), 716-723.
Bishop T. F., and Minasny B. 2016. Digital soil-terrain modeling: the predictive potential and uncertainty. In Grunwald, S. (Eds). Environmental soil-landscape modeling, CRC Press. pp. 185-213.
Box G. E., Jenkins G. M., Reinsel G. C., and Ljung G. M. 2016. Time Series Analysis: Forecasting and Control. 5th Ed, John Wiley and Sons. 712p.
Chaplot V., Walter C., and Curmi P. 2000. Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma, 97(3): 405-422.
Chang K. T., and Tsai B. W. 1991. The effect of DEM resolution on slope and aspect mapping. Cartography and Geographic Information Systems, 18(1), 69-77.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J. 2015: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007, doi:10.5194/gmd-8-1991-2015.
Deng Y., Wilson J. P., and Bauer B. O. 2007. DEM resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Science, 21(2), 187-213.
Florinsky I. 2016. Digital Terrain Analysis in Soil Science and Geology. Second Ed., Academic Press, Amsterdam, pp. 7-68.
Gallant J. C., and Wilson J. P. 2000. Primary Topographic Attributes. In Wilson, J. P. and Gallant, J. C. (Eds). Terrain analysis: principles and applications. John Wileys and Sons, New York, pp. 58-59.
Han X., Liu J., Mitra S., Li X., Srivastava P., Guzman S. M., and Chen X. 2018. Selection of optimal scales for soil depth prediction on headwater hillslopes: A modeling approach. Catena, 163, 257-275.
Khanifar J., Khademalrasoul A., and Amerikhah H. 2018. Effect of Digital Elevation Model (DEM) Spatial Resolution on Geomorphometric modeling of Soil aggregate stability. The First National Conference on Sustainable Development in Agricultural Sciences and Natural Resource. Tehran, Iran. (In Persian)
Kienzle S. 2004. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Transactions in GIS, 8(1), 83-111.
Koo J. Y., Yoon D. S., Lee D. J., Han J. H., Jung Y., Yang J. E., and Lim K. J. 2016. Effect of DEM Resolution in USLE LS Factor. Journal of Korean Society on Water Environment, 32(1), 89-97.
Horn R.G. and Israelachvili, J.N. 1981. Direct measurement of structural forces between two surfaces in a nonpolar liquid. The Journal of Chemical Physics, 75(3), 1400-1411.
McKenzie N. J., and Ryan P. J. 1999. Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1): 67-94.
Moore I. D., Grayson R. B., and Ladson A. R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30.
Nath D. A. 2006. Soil landscape modeling in the Northwest Iowa Plains region of O’Brien County, Iowa, Master of Science, Iowa State University, USA.
Park S. J., and Vlek P. L. 2002a. Soil-landscape analysis as a tool for sustainable land management. Hydrology and Earth System Sciences Discussions, 36(1), 31-49.
Park S. J., and Vlek P. L. G. 2002b. Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma, 109(1-2), 117-140.
Pierson F. B., and Mulla D. J. 1990. Aggregate stability in the Palouse region of Washington: effect of landscape position. Soil Science Society of America Journal, 54(5): 1407-1412.
Pradhan B., and Sameen M. I. 2017. Effects of the Spatial Resolution of Digital Elevation Models and Their Products on Landslide Susceptibility Mapping. In Pradhan, B. (Ed.). Laser Scanning Applications in Landslide Assessment. Springer, pp. 133-150.
Sørensen R., and Seibert J. 2007. Effects of DEM resolution on the calculation of topographical indices: TWI and its components. Journal of Hydrology, 347(1-2), 79-89.
Sörensen R., Zinko U., and Seibert J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences Discussions, 10(1), 101-112.
Smith M. P., Zhu A. X., Burt J. E., and Stiles C. 2006. The effects of DEM resolution and neighborhood size on digital soil survey. Geoderma, 137(1): 58-69.
Sugiura N. 1978. Further analysts of the data by akaike's information criterion and the finite corrections: Further analysts of the data by akaike's. Communications in Statistics-Theory and Methods, 7(1), 13-26.
Thompson J. A., Bell J. C., and Butler C. A. 2001. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma, 100(1-2), 67-89.
Wilson J. P., and Gallant J. C. 2000. Digital terrain analysis. In Wilson, J. P. and Gallant, J. C. (Ed.). Terrain analysis: principles and applications. John Wileys and Sons, New York, pp. 1-22.
Wu W., Fan Y., Wang Z., and Liu H. 2008. Assessing effects of digital elevation model resolutions on soil–landscape correlations in a hilly area. Agriculture, Ecosystems and Environment, 126(3-4), 209-216.
Zhang W., and Montgomery D. R. 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water resources research, 30(4), 1019-1028.
Zhang H. Y., Shi Z. H., Fang N. F., and Guo M. H. 2015. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234: 19-27.
Yuan L., Zhou Q., Li W., Zhang Q., and Jiang W. 2006. DEM-based watershed topographic attributes extraction and analysis. In EEE International Symposium on Geoscience and Remote Sensing, Denver CO, pp. 902-904.
Zevenbergen L. W., and Thorne C. R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12: 47–56. | ||
آمار تعداد مشاهده مقاله: 1,635 تعداد دریافت فایل اصل مقاله: 1,336 |