تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,263,931 |
تعداد دریافت فایل اصل مقاله | 1,895,988 |
بررسی تاثیر اصلاح کننده آلی (کود دامی و بیوچار) بر پایداری علفکش متری بیوزین در خاک | ||
تحقیقات کاربردی خاک | ||
مقاله 12، دوره 8، شماره 1، اردیبهشت 1399، صفحه 149-161 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
کلثوم عبداللهی* 1؛ سیدعلیرضا موحدی نائینی2؛ مجتبی بارانی3؛ پونه ابراهیمی4؛ قربانعلی روشنی5 | ||
1دانشجو دکترا گروه علوم خاک دانشگاه علوم کشاورزی گرگان | ||
2دانشیار علوم خاک گرگان | ||
3استادیار گروه علوم خاک دانشگاه علوم کشاورزی گرگان | ||
4دانشگاه گلستان | ||
5دانشیار موسسه تحقیقات پنبه کشور | ||
چکیده | ||
کاربرد مداوم و نادرست علفکشها میتواند صدمات جبرانناپذیری بر محیط زیست و زندگی موجودات زنده ایجاد کند. به همین علت آگاهی از پایداری علفکشها در خاک، به سبب اهمیت تعیین پتانسیل آنها در آلوده کردن محیط و آسیبرسانی به گیاهان زراعی امری ضروری به نظر میرسد. این مطالعه با هدف بررسی تاثیر بیوچار و کود دامی بر پایداری علفکش متریبیوزین در شرایط اشباع و غیر اشباع خاک در قالب طرح کاملا تصادفی با آرایش فاکتوریل انجام شد. تیمارهای آزمایش شامل دو نوع ماده آلی اصلاح کننده (کود گاوی و بیوچار) و شرایط رطوبتی (اشباع و غیر اشباع) در ۷ زمان نمونهبرداری (صفر، 8، ۱۶، ۳۶، ۶۴، ۹۰و ۱۱۰ روز) بودند. نتایج اندازهگیری غلظت علفکش در تیمارها از زمان مصرف تا ۱۱۰ روز در هر دو حالت اشباع و غیر اشباع نشان داد که در تیمارهای دارای اصلاح کنندههای آلی، میزان کاهش غلظت علفکش بیشتر از خاک شاهد بود. تجزیه علفکش در خاک مطابق تابع سینتیکی مرتبه اول بود. کمترین ضریب تجزیه (K) مربوط به تیمار شاهد و بیشترین ضریب تجزیه مربوط به تیمار اصلاح کننده بیوچار بود که بیانگر پایداری علفکش در تیمار شاهد و تاثیر مثبت اصلاحکننده آلی بر افزایش سرعت تجزیه علفکش است. نیمه عمر محاسبه شده تیمارهای آزمایش در محدوده ۳۴ تا ۳۸ روز بود، بیشترین نیمه عمر (38 روز) مربوط به تیمار خاک شاهد در شرایط غیر اشباع و کمترین نیمه عمر (34 روز) در تیمار اصلاح کننده بیوچار در شرایط اشباع بود. نتایج آزمایش نشان داد تجزیه علفکش در تیمارهای دارای اصلاحکنندههای آلی در شرایط رطوبتی اشباع از غیراشباع بیشتر بود. | ||
کلیدواژهها | ||
"خاک اشباع"؛ " خاک غیر اشباع"؛ " نیمه عمر"؛ "تابع سینتیکی مرتبه اول"؛ "ضریب تجزیه" | ||
مراجع | ||
References
Beesley L., Moreno-Jiménez E., Gomez-Eyles JL., Harris E., Robinson B., and Sizmur T. 2011. A review biochars’potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159 (3):269–3282.
Briceno G., and Palma G. 2007. Influence of organic amendment of the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, 37: 233-271.
Bowman B. 1991. Mobility and dissipation studies of metribuzin in planfield sand using field lysimeters. Environmental Toxicology and Chemistry, 10: 573-579.
Cupples A.M., Sims G. K., Hultgren R. P. and Hart S. E. 2000. Effect of soil conditions on the degradation of cloransulam-methyl. Environmental Quality, 29 (3):786-794.
Gaskin J. W., Speir R. A., Harris K., Lee, R. D. Morris L. A., and Fisher D. S., 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102: 623-633.
Hance R. J., 1987. Herbicide behavior in the soil, with particular references to the potential for ground water contamination in Huston D. H., and Roberts T.R., (Ed.), Wiley, Chichester, England, pp. 223-247.
Henriksen T., Svensmark B., and Juhler R. K., 2004. Degradation and sorption of metribuzin and primary metabolites in a sandy soil. Environmental Quality, 33: 619-627.
Hogg, S. 2005. Essential microbiology. Jon Wiely and Sons, Ltd., West Sussex, England. 468p.
Hu C., Li A., Lin Y., Ling X., Cheng M. 2017. Degradation kinetics and DBP formation during chlorination of metribuzin. Journal of the Taiwan Institute of Chemical Engineers, 80: 255-261
Itoh K., Ikushima T., Suyama K., and Yamamato H. 2003. Evaluation of pesticide effects on microbial comunities in a paddy soil comparing with that caused by soil flooding. Journal of Pesticide Science. 28: 51-54.
Jablonowski N.D., Hamacher G., Accinelli C., Berns A.E., Meng F., and Martinazzo R. 2010. Influence of biochar and activated char amendment on the biodegradation of 14 Catrazine in atrazine adapted soils from Belgium and Brazil. Setac Europe 20th Annual Meeting, Seminar, Seville, Spain, pp.21-22.
Kadian N., Gupta A., Satya S., Kumari Mehta R. and Malik A. 2007. Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technology, 99: 4642-4647.
Kaake R. H., Roberts D.J., Stevenson. T.O., Crawford R.L., and Crawford. D.L. 1992. Bioremediation of soils contaminated with the herbicide 2-sec-butyl-4, 6- dinitrophenol (dinoseb). Applied Environmental Microbiology, 50: 1683-1689.
Khoury R., Geahchan A., Coste C. M., Cooper J. F., and Bobe A. 2003. Retention and degradation of metribuzin in sandy loam and clay soils of Lebanon. Journal of Weed Research, 43: 252-259.
Klute A. 1986. In: Klute A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd edition. Agronomy Monog.9. ASA and SSSA, Madison, WI, 1188p.
Lehmann J., Silva Jr J. P., Steiner C., Nehls T., Zech W., and Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249: 343-357.
Lin C. H., Lerch R. N., Garrett E., Johnson W. G., Jordann D., and Georg M. F. 2003. The effect of five forage species on transport and transformation of atrazin and isoxaflutole (Balance) in lysimetre Leachate. Journal of Agricultureal and Food Chemistry, 49: 3859-3863.
Lorenz K., and Lal R. 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Plant Nutrition and Soil Science, 177: 651-670.
Lou L., Wu B., Wang L., Luo L., Xu X., Hou J. 2011 Sorption and Eco toxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar. Bioresource Technology, 102:4036–4041.
Manuel A. E., Mejuto J.C., Garcia-Rio L. 2007. The mobility and degradation of pesticides in soils and the pollution of ground water resources, Agriculture. Journal of Ecosystems and environment, 123: 247-260.
Maqueda C., Villaverde J., Sopena. F., Undabeytia S., and Morillo S. 2009. Effects of Soil Characteristics on Metribuzin Dissipation Using Clay-Gel-Based Formulations. Agricultural Food Chemistry. 2009. 57: 3273–3278.
Milosevic N.A., and Govedarica M.M. 2002. Effect of herbicides on microbiological properties of soil. Proceedings for Natural Sciences,102: 5-21.
Moorman T. B., Cowan J. K., Arthur E. L., and Coats J. R. 2000. Organic amendment to enhance herbicide biodegradation in contaminated soil. Biology and Fertility of Soils, 33: 541-545.
Mueller K., Smith R. E., James T. K., Holland P. T., and Rahman A. 2003. Spatial variability of atrazine dissipation in an allophonic soil. Pest Management Science, 59: 893-903.
Mulbah C. K., Porthouse J. D., Jugsujinda, A., Delaune, R. D. and Johnson, A. B. 2000. Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils. J. Environmental Science. Health, 35: 689–702.
Noshadi E., Homaei M., Mahmoodian M., ad Abbasi F. 2013. Transmission and degradation of herbicides in soil in different irrigation systems. Soil and Water Research, 45(3): 255-263. (In Persian)
Page A.L. 1985. Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods. Agron. Monog.9. ASA and SSSA, Madison, WI, 1097p.
Pena D., Lopez –Pinerio A., Albarran A.,Rato J., Sanchez-Llerena J., Becerra D., Ramirez B. 2015. De-oiled two-phase olive mill waste may reduce water contamination by metribuzin. Science of the Total Environment, 541(15): 638-645.
Ramesh A., and Maheswari A.R. 2003. Dissipation of sulfosulfuron in soil and wheat plant under predominant cropping conditions and in a simulated model ecosystem. Journal of Agriculture and Food Chemistry, 51: 3396-3400
Reimer M., Farenhorst A., and Gaultier J. 2005. Effect of manure on trifluralin mineralization in soil. Journal of Environmental Science and Health, 40, 605–617.
Robertson B. K., and Alexander M. 1994. Growth-linked and biodegradation: possible reason for occurrence or absence of accelerated pesticide biodegradation. Journal of Pesticide Science, 41: 311-318.
Saha S., and Kulshrestha G. 2008. Hydrolysis kinetics of the sulfonylurea herbicide sulfosulfuron. Environmental Contamination and Toxicology, 88(12):891-898.
Singh N. 2008. Bio compost from sugar distillery effluent: effect on metribuzin degradation. sorption and mobility. Journal of pest management science, 64:1057-106.
Sohi S., Krull E., Lopez-Capel E. and Bol R. 2010. A review of biochar and its use and function in soil. Advances in agronomy, 105:47-82.
-Strek H. J. 2005. The Science of soil residual herbicides in Canada. In: Van AckerR.C. (ed.), Soil residual herbicides: Science and Management. Topics in Canadian weed science,Volume 3. Sainte Anne-de Bellevue, Quebec, pp. 31-44.
Tasli S., Patty L., Boetti H., Ravanel P., Vachaud G., Schrff C., Favre-Bonvin J., Kauadji M., and Tissut M. 1996. Persistence and leaching of atrazine in corn culture in the experimental site of La Cote Saint Andre. Environmental Contamination and Toxicology, 30:203-212.
Vassilev N., Martos E., Mendes G., Martos V. and Vassileva M. 2013. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity. Journal of the Science of Food and Agriculture, 93: 1799-1804.
Zand E., Baghestani M. A., Shimi P., Faghih S. A. 2002. Analysis of Herbicides management in Iran. Tehran: Department of weed Research, plant protection Research Institute, 41p.
Zhang P., Sheng G., Feng Y., Miller D.M. 2005. Role of wheat residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environmental Science and Technology, 39(14): 5442–5448.
Zhang P., Hungven S., Loujun M., Chao R. 2018. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. Environmental Pollution, 236 (14), 158-167. | ||
آمار تعداد مشاهده مقاله: 1,550 تعداد دریافت فایل اصل مقاله: 1,261 |