تعداد نشریات | 13 |
تعداد شمارهها | 150 |
تعداد مقالات | 1,491 |
تعداد مشاهده مقاله | 2,264,094 |
تعداد دریافت فایل اصل مقاله | 1,896,093 |
اثر اسید استیک بر کارایی پالایش مزرعه ای خاک آلوده به سرب با فناوری الکتروسینتیک | ||
تحقیقات کاربردی خاک | ||
مقاله 8، دوره 7، شماره 1، خرداد 1398، صفحه 95-107 اصل مقاله (880.39 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مسلم ثروتی* 1؛ حسین بیرامی2 | ||
1عضو هیئت علمی | ||
2هیات علمی مرکز ملی تحقیقات شوری یزد-فیزک خاک-انتقال املاح آلودگی خاک-آبگریزی- | ||
چکیده | ||
اصلاح الکتروسینتیکی خاک یکی از روشهای ابتکاری جهت آلودگیزدایی از خاکهای آلوده به فلزات سنگین است. با این حال، استفاده از روش مذکور در شرایط مزرعهای در خاکهایی با قدرت جذب بالا برای فلزات سنگین، نیاز به مطالعه بیشتر دارد. در این پژوهش اصلاح خاک لوم که بهصورت مصنوعی با سرب (Pb) آلوده شده بود، به روش الکتروسینتیک در سه عمق صفر، 15 و 30 سانتیمتری در شرایط مزرعهای در کرتهای آزمایشی مورد بررسی قرار گرفت. خاک مورد نظر پس از آلوده شدن توسط محلول نیترات سرب (1 گرم در لیتر)، دارای غلظت بالایی از سرب (5/109، 1/102 و 3/87 میلیگرم بر کیلوگرم بهترتیب در سه عمق صفر، 15 و 30 سانتیمتری) بود. آزمایشها با اعمال شیب ولتاژ یک ولت بر سانتیمتر در دوره زمانی 10 روز در شرایط اشباع در مزرعهای در اطراف شهرستان تبریز در شمال غرب ایران انجام گردید. در این تحقیق اثر نوع محلولهای الکترولیت (آب مقطر و اسید استیک 005/0 مولار) بر کارایی حذف الکتروسینتیکی Pb بررسی شد. نتایج نشان داد که نوع محلول الکترولیت بر روی کارایی حذف Pb مؤثر میباشد. بعد از اعمال جریان الکتریکی به مدت 10 روز، میانگین درصد حذف سرب در تیمار آب مقطر در عمقهای صفر، 15 و 30 سانتیمتر بهترتیب به 15/18، 05/18 و 85/20 درصد رسید. میانگین مقدار حذف Pb از خاک در تیمار اسید استیک در سه عمق مذکور بهترتیب برابر با 0/22، 55/21 و 05/24 درصد بود که نشاندهنده افزایش 85/3، 5/3 و 2/3 درصدی کارایی حذف نسبت به تیمار آب مقطر بود. مقدار بالای آهک (% 1/20) در خاک مورد نظر مانع افزایش قابل توجه کارایی حذف در تیمار اسید استیک شد. همچنین بررسی تغییرات pH در طول کرتهای آزمایشی نشاندهنده روند افزایشی pH از آند به سمت کاتد بود. در تیمار اسید استیک کاهش pH بیشتری در سمت آند مشاهده شد. | ||
کلیدواژهها | ||
آلودگیزدایی؛ آهک؛ الکترولیت؛ دشت تبریز؛ فلزات سنگین | ||
مراجع | ||
References
Acar Y.B. and Alshawabkeh. A.N. 1996. Electrokinetic remediation I: Pilot scale tests with lead-spiked Kaolinite. Journal of Geotechnical Engineering, 122 (3): 173-185.
Acar Y.B. Alshawabkeh A.N., and Parker R.A. 1997. Theoretical and experimental modeling of multi-species transport in soils under electric fields. EPA/600/R-97/054.
Al-Hamdan A.Z. and Reddy K.R. 2008. Transient behavior of heavy metals in soils during electrokinetic remediation. Chemosphere 71: 860–871.
Altaee A., Smith R. and Mikhalovsky S. 2008. The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process. Journal of Environmental Management, 88: 1611–1618.
Alloway B.J. 1995. Heavy Metals in Soils. Chapman and Hall. London. UK, 368 p.
Ammami M.T., Portet-Koltalo F., Benamar A., Duclairoir-Poc C., Wang H. and Le Derf F. 2015. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine. Chemosphere, 125: 1–8.
Amrate S. and Akretche D.E. 2005. Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils. Chemosphere, 60: 1376–1383.
Baek K., Kim D., Park S., Ryu B., Bajargal T. and Yang J. 2009. Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, 161: 457–462.
Bahemmat M., Farahbakhsh M., Pourbabaei A.A. and Savabeghi Gh. 2011. Electrokinetic Remediation of a Heavy Metal-Contaminated Soil and its Effect on Microbial Biomass-C and Microbial Coefficient. Iranian Journal of Soil and Water Research, 42(2): 249-255. (In Persian)
Beyrami H., Neyshabouri M.R., Oustan S. and Ramazanzadeh H. 2008. Effect of different treatment on the efficiency of electrokinetic removal of Zn from a contaminated clay soil. Journal of Agricultural Science, 18(4): 53-64. (In Persian)
Beyrami H., Neyshabouri M.R. and Oustan S. 2009. Effects of Moisture Content and Voltage Gradient on the Removal of Cd, Pb and Zn from a Calcareous Contaminated Soil. Journal of Water and Soil Science, 19(2): 177-199. (In Persian)
Cai Z.P., van Doren J., Fang Z.Q. and Li W.S. 2015. Improvement in electrokinetic remediation of Pb-contaminated soil near lead acid battery factory. Transactions of Nonferrous Metals Society of China, 25: 3088−3095.
Chapman H.D. 1965. Cation exchange capacity. In: Black C.A., (Ed.), Methods of Soil Analysis, Chemical and Microbiological Properties. American Society Agronomy, Madison, WI, pp.891-901.
Chung H.I. and Kang B.H. 1999. Lead removal from contaminated marine clay by electrokinetic soil decontamination. Engineering Geology, 53: 139-150.
Gee G.W. and Or D. 2002. Particle size analysis. In: Dane J.H. and Topp G.C., (Ed.), Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America, Madison, WI, pp. 255-293.
Giannis A., Gidarakos E. and Skouta A. 2008. Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation. Journal of Environmental Management, 86: 535–544.
Gomes H.I., Dias-Ferreira C. and Ribeiro A.B. 2012. Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere, 87: 1077–1090.
Jeon E.K., Ryu S.R. and Baek K. 2015. Application of solar-cells in the electrokinetic remediation of As-contaminated soil. Electrochimica Acta, 181: 160-166.
Kim D., Jeon C., Baek K., Ko S. and Yang J. 2009. Electrokinetic remediation of fluorine-contaminated soil: Conditioning of anolyte. Journal of Hazardous Materials, 161: 565–569.
Lee H.H. and Yang J.W. 2000. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. Journal of Hazardous Materials, 77: 227-240.
Nelson D.W. and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks (ed). Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America. Madison, WI, pp. 961-1010.
Ottosen L.M., Hansen H.K., Ribeiro A.B. and Villumsen A. 2001. Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. Journal of Hazardous Materials, 85: 291-299.
Reddy K.R. and Chinthamreddy S. 1999. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Management, 19: 269-282.
Reddy K.R. Saichek R.E., Maturi K., and Ala P. 2002. Effects of soil moisture and heavy metal concentrations on electrokinetic remediation. Indian Geotechnical Journal, 32(2): 258- 288.
Richards L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agricultural Handbook No. 60, US Department of Agriculture, Washington, DC. 154p.
Rosestolato D., Bagatin R. and Ferro S. 2015. Electrokinetic remediation of soils polluted by heavy metals (mercury in particular). Chemical Engineering Journal, 264: 16-23.
Shahmohammadi S., Beyrami H. and Rmazanzadeh H. 2015. Remediation of zinc contaminated soil with electrokinetic technology in field condition. Journal of Water and Soil Science, 25(3): 105-116. (In Persian)
Song Y., Ammami M.T., Benamar A., Mezaaigh S. and Wang H. 2016. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environmental Science and Pollution Research, 23(11): 10577-10586.
Soil conservation service. 1992. Soil Survey Laboratory Methods and Procedures for Collection Soil Sample. USDA, SCS. Soil Survey.Government Print, Washington, DC. 769p.
Sposito G., Lund L.J. and Chang A.C. 1982. Trace metal chemistry in arid-zone field’s soil amended with sewage sludge. 1. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America journal, 46: 260-264.
Turer D. and Genc A. 2005. Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis. Journal of Hazardous Materials, 119: 167-174.
Virkutyte J., Sillanpää M. and Latostenmaa P. 2002. Electrokinetic soil remediation - critical overview. The Science of the Total Environment, 289: 97-121.
Yang J.W., Lee Y.J., Park J.Y., Kim S.J. and Lee J.Y. 2005. Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Engineering Geology, 77: 243–251.
Yuan C. and Chiang T. 2008. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. Journal of Hazardous Materials, 152: 309-315.
Yuan C., Zheng Z., Chen J. and Lu X. 2009. Use of solar cell in electrokinetic remediation of cadmium-contaminated soil. Journal of Hazardous Materials, 162(1): 583-1587.
Zhou D.M., Deng C.F., Alshawabkeh A.N. and Cang L. 2005a. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings. Environment International, 31: 885-890.
Zhou D.M., Deng C.F., Cang L. and Alshawabkeh A.N. 2005b. Electrokinetic remediation of a Cu–Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere, 61: 519–527. | ||
آمار تعداد مشاهده مقاله: 1,600 تعداد دریافت فایل اصل مقاله: 1,169 |