تعداد نشریات | 13 |
تعداد شمارهها | 149 |
تعداد مقالات | 1,479 |
تعداد مشاهده مقاله | 2,257,611 |
تعداد دریافت فایل اصل مقاله | 1,887,932 |
تأثیر سطوح مختلف فسفر بر وابستگی میکوریزایی، خصوصیات رشدی و جذب فسفر در دو گیاه ذرت و سویا | ||
تحقیقات کاربردی خاک | ||
مقاله 5، دوره 6، شماره 4، اسفند 1397، صفحه 58-70 اصل مقاله (839.02 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
جلال صادقی1؛ امیر لکزیان* 2؛ علیرضا آستارایی2؛ اکرم حلاج نیا2 | ||
1دانشجوی دانشگاه فردوسی | ||
2استاد دانشگاه فردوسی | ||
چکیده | ||
کمبود فسفر در مناطق گرمسیری و مشکلات مصرف زیاد کودهای شیمیایی، اهمیت پرداختن به همزیستی گیاهان با ریزجانداران خاک را دوچندان میکند. به همین منظور آزمایش گلخانهای با استفاده از دو گیاه ذرت و سویا در قالب طرح کاملا تصادفی با آرایش فاکتوریل در سه تکرار انجام شد. تیمارهای آزمایش شامل پنج سطح فسفر (صفر (P0)، (P1) 25، (P2) 50، (P3) 75 و (P4) 100 درصد توصیه کودی) و دو سطح حضور (M1) و عدم حضور (M0) قارچ فانلیفورمیس موسه بود. تجزیه آماری دادهها نشان داد که تاثیر سطوح مختلف فسفر و میکوریزا بر صفات اندازهگیری شده در سطح یک درصد معنیدار بودند. با افزایش مقدار فسفر، وابستگی و پاسخ میکوریزایی و کلونیزاسیون در دو گیاه کاهش یافت. اما سایر صفات مورد اندازهگیری با افزایش مقدار کود فسفر و حضور میکوریزا افزایش داشتند. وزن خشک اندام هوایی دو گیاه مورد مطالعه، وزن خشک ریشه (ذرت)، ارتفاع گیاه، غلظت و جذب فسفر در هر دو گیاه ذرت و سویا در تیمار P4M1بیشترین و در تیمار P0M0 کمترین مقدار را دارا بودند. در بیشتر صفات مورد اندازهگیری بیشترین تفاوت بین حضور و عدم حضور میکوریزا در سطح P0 مشاهده شد که بیانگر تاثیر بیشتر میکوریزا در زمان کمبود عنصر کمتحرک فسفر میباشد. با افزایش سطوح کود مصرفی، تفاوت بین تیمار حاوی میکوریزا نسبت به تیمار فاقد آن در هر سطح کودی، کاهش یافت. | ||
کلیدواژهها | ||
ویژگیهای رشدی؛ فسفر؛ فانلیفورمیس موسه؛ وابستگی میکوریزایی | ||
مراجع | ||
References
Abdel-Fattah G.M., Asrar A.A., Al-Amri S.M., and Abdel-Salam E.M. 2014. Influence of phosphatase activity of soyben (Glycine max L.) plants. Photosynthetica, 52: 581-588.
Alizadeh O. 2010. Evaluation effect of water stress and nitrogen rates on amount of absorbtion some macro and micro elements in corn plant mycorrhizae and non mycorrhizae. Advances in Natural and Applied Sciences, 4(2): 153-158.
Alizadeh O., Zare M., and Nasr A.H. 2011. Evaluation effect of Mycorrhiza inoculate under drought stress condition on grain yield of sorghum (Sorghum bicolor). Advances in Environmental Biology, 5: 2361–4
Al-Karaki G., McMichael B., and Zak J. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14: 263–9.
Al-Karaki G.N., and Al-Raddad A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7(2): 83-88.
Alloway B.J. 2004. Zinc in soils and crop nutrition. Brussels, Belgium: International Zinc Association, 139p.
Alloway B. J. 2008. Micronutrients and crop production: An introduction. In Micronutrient deficiencies in global crop production Springer Netherlands. 353p.
Amijee F., Tinker P.B., and Stribley D.P. 1989. The development of endomycorrhizal root systems. New Phytologist, 111(3): 435-446.
Amirabadi M., Ardakani M.R., Rejali F., and Borji M. 2010. Determination of efficiency of mycorrhiza and Azotobacter in uptake of microelements, Zn, Cu and Fe under different levels of phosphorus in Corn Hybrid of KSC 704. Soil and Water Research Institute, Iran, 1: 49-56. (In Persian)
Amou Aghaei R., Mostajeran A., and Emtiazi G. 2004. Rhizobium bacteria effect on growth indices and yield of wheat. Journal of Science and Technology of Agriculture and Natural Resources, University of Technology. 2: 127-139. (In Persian)
Bagayoko M., George E., Römheld V., and Buerkert A. 2000. Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. Journal of Agricultural Science, 135: 399–407.
Bolan N.S. 2000. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134: 189-207.
Bremner J.M., and Mulvaney C.S. 1982. Nitrogen-Urea. In: Miller R.H. and Keeney, D.R. (Ed.), Method of Soil Analysis. Chemical and Microbiological Properties. American Society of Agronomy. USA, pp. 699-708.
Brundrett M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phylogist, 154: 275-304.
Calderon-Vazquez C., Ibarra-Laclette L., Caballero-Perez J., and Herrera-Estrella L. 2008. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Journal of Expert Botany, 59: 2479–2497.
Castillo C.G., Puccio F., Morales D., Borie F., and Sieverding E. 2012. Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile. Journal of Soil Science and Plant Nutrition, 12(3): 511-524.
Chen B.D., Li X.L., Tao H.Q., Christie P., and Wong M.H. 2003. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 50(6): 839-846.
Ekin Z. 2010. Performance of phosphate solibilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. AfricanJournal of Biotechnology, 9: 3794-3800.
Fedderman N., Finlay R., Boller T., and Elfstrand M. 2010. Functional diversity in arbuscular mycorrhiza—the role of gene expression, phosphorus nutrition and symbiotic efficiency. Fungal Ecology, 3: 1–8.
Feng G., Zhang F.S., Li Xl, Tian C.Y., Tang C., and Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12: 185–190.
Fitter A.H., Helgason T., and Hodge A. 2011. Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biology Reviews, 25(1): 68-72.
Gee G.W., and Bauder J.W. 1986. Particle-size analysis. Methods of soil analysis: Part 1—Physical and Mineralogical Methods. Klute A. Ed. Chap. 15. American Society of Agronomy. Soil Science Society of America, 383–411.
Gerdemann J.W. 1975. Vesicular-arbuscular mycorrhizae. In. The development and function of root (Ed.by J. G. Torrey and D. T. Clarkson), pp. Academic Press, New York. 575-595.
Hetrick B.A.D., Wilson G.W.T., and Todd T.C. 1996. Mycorrhizal response in wheat cultivars: relationship to phosphorus. Canadian Journal Botany, 74: 19–25
Jahan M., kouchaki M.R., and Nasiri Mahalati M. 2008. The effects of biological fertilizers on corn Agroecological characteristics in common agricultural and ecological systems. Journal of Agricultural Research, 7(2): 375-390. (In Persian)
Khaliel A.S. 1988. Incidence of AM in some desert plants and correlation with edaphic factors. In: Mahadevam, A., Raman, N. and Natrajan, K. (Ed.), Mycorrhizal for Green Asia. Proceeding of 1st Asian conference on mycorrhizae, CAS in Botany, Madras, pp. 55–59.
Khalil S., Loynachan T.E., and Tabatabai M.A. 1999. Plant determinants of mycorrhizal dependency in soybean. Agronomy Journal, 91: 135–141.
Khalil S., Loynachan T.E., and Tabatabai M.A. 1994. Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agronomy Journal, 86: 949–958.
Koide R.T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New phytologist, 117(3): 365-386.
Kravchenko L.V., Leonova E.I., and Tikhonovich I.A. 1994. Effect of root exudates of non-legume plants on the response of auxin production by associated diazotrophs. Microbial Releases, 2: 267–271.
Liu A., Hamel C., Hamilton R.I., and Ma B.L. 2000. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9: 331–336.
Loeppert, R.H., and D.L. Suarez. 1996. Carbonate and gypsum. In: Sparks D.L. (Ed.), Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No. 5. Soil Science Society of America Journal and ASA, Madison, WI. p. 437-474.
Marschner H., and Dell B. 1994. Nutrient uptake in mycorrhizai symbiosis. Plant and Soil, 159: 89–102.
Marzban Z., Amerian M.R., and Mamar Ababdi M. 2015. Beans and corn root colonization index of consumer characteristics and Mesorhizobium bacteria and fungus mycorrhiza Fungi in intercropping. Journal of Soil Management and Sustainable Production, 4(2): 169-185. (In Persian)
Menge B.A., Daley B.A., Lubchenco J., Sanford E., Dahlhoff E., Halpin P.M., Hudson G., and Burnaford J.L. 1999 Topdown and bottom-up regulation of New Zealand rocky intertidal communities. Ecological Monographs, 69: 297–330.
Nadian H. 2012. Effect of drought stress and symbiotic mycorrhizae on growth and phosphorus uptake by two sorghum genotypes differing in root morphology. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Sciences, 15(57): 127-140. (In Persian)
Nelson L.L., and Allen A.B. 1993. Restoration of Stipa pulchra grasslands: Effects of mycorrhizae and competition from Avena barbata. Restoration Ecology, 2:40–50.
Neumann E., and George E. 2009. The effect of arbuscular mycorrhizal root colonization on growth and nutrient uptake of two different cowpea (Vigna unguiculata L. Walp.) Genotypes exposed to drought stress. Emirate Journal of Food and Agriculture, 21(2): 01-17.
Olsen S.R., and Sommers L.E. 1982. Phosphorus, In: Page A.L. (Ed.), Methods of Soil Analysis, part 2, Chemical and Microbiological Properties, Soil Science Society of American Journal, Madison, pp. 403–430.
Philips J.M., and Hayman D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British MycologicalSociety, 55: 158-161.
Plenchette C., Fortin J.A., and Furlan V. 1983. Growth response of several plant species to mycorrhiza in a soil of moderate P-fertility. Plant and Soil, 70: 199-209.
Ponmurugan P., and Gopi C. 2006. Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. Journal of Agronomy, 5: 600-604.
Santos R.D., Girardi C.G., Pescador R., and Stürmer S.L. 2010. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on post vitro growth of micropropagated Zingiber officinale roscoe. Revista Brasileira de Ciência do Solo, 34(3): 765-771.
Schneider A., and Morel C. 2000. Relationship between the isotopically exchangeable and resin extractable phosphate of deficient to heavily fertilized soil. European Journal of Soil Science, 51(4) :709-715.
Schubler A., Schwarzott D., and Walker. C. 2001. A new fungal phylum, The Glomeromycota; Phylogeny and evolution. Mycological Research, 105: 1413-1412.
Smith S.E., and Read D.J. 1997. Mycorrhizal Symbiosis, Academic Press. San Diego. CA, 605p.
Smith S.E., Smith F.A., and Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162: 511-524.
Smith S.E., and Read D.J. 2008. Mycorrhizal symbiosis 3rd ed. London: Academic Press, 815p.
Treseder K.K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164: 347–355.
Vamerali T., Saccomani M., Mosca S., Guarise N., and ganis. A. 2003. A comparison of root charactertics in relation to nutrient and water stress in two maize hybrids. Plant and soil, 25: 157- 167.
Walkley A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29-38. | ||
آمار تعداد مشاهده مقاله: 1,735 تعداد دریافت فایل اصل مقاله: 1,328 |