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A B S T R A C T 

  

This study investigates the risk of late spring frosts in West Azerbaijan province by developing a minimum air 

temperature estimation model. Utilizing daily minimum air temperature data from 20 meteorological stations, 

satellite-derived land surface temperature, and auxiliary data, a statistical model was developed. Subsequently, 

daily minimum temperature maps for potential spring frost months (in the period 2000-2023) were generated to 

analyze late spring frost risk. This research provides two novel tools: a code to estimate frost occurrence risk for 

specific day numbers and temperature thresholds, and another code to estimate the day number corresponding to a 

given risk percentage and temperature threshold. The frost risk estimation code offers 17,690 possible scenarios, 

while the day number estimation code provides 2,755, enabling detailed frost risk analysis for various plant 

sensitivities and optimized planting date determination. The resulting frost risk maps are valuable for determining 

suitable crop cultivation times and locations, considering varying plant sensitivity thresholds to frost. 
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1. Introduction  

Frost is defined as a condition where the air temperature 

near the Earth's surface drops below zero degrees Celsius. 

Freezing occurs when the air temperature in a large area 

remains below zero degrees Celsius for a sufficient period of 

time (at least 1 or 2 days) (Huschke, 1959). However, 

agricultural meteorologists believe that agricultural frosts 

begin at a higher threshold, often considering +4 degrees 

Celsius as the starting point for frost damage to plant tissues 

(Bazrafshan and Rahimi, 2014). Although plants are highly 

resistant to sub-freezing temperatures during winter 

dormancy, during active growth, the sensitive tissues of 

plants, including new buds,  leaves, and flowers, are 

vulnerable to frost (Inouye, 2000). Freezing can cause 

damage to plants, and the severity of the damage depends on 

the intensity and duration of the frost. When a plant freezes, 

ice forms inside or outside the cells. Intracellular freezing is 

immediately destructive, while extracellular freezing can 

cause varying levels of damage depending on the rate and 

extent of the dehydration process (Weiser et al., 1979). 

Chilling injury occurs when physiological damage is caused 

to the plant in the temperature range of 0 to +10 degrees 

Celsius. 
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The terms chilling injury and frost are often used 

interchangeably. Generally, there are two types of agricultural 

damage caused by frost. The first type is damage caused by 

unusually low winter temperatures over a long period, and the 

second type is damage caused by damaging sub-zero 

temperatures that occur as rare and short-term events (Kalma et 

al., 1992). The severity of frost damage depends on the 

phenological stage of plant development relative to the 

occurrence of low temperatures. Since both the occurrence of 

frosts and plant phenology are related to seasonal temperature 

changes, both are subject to climate change conditions. 

Therefore, in the future, the risk of frost damage will depend 

not only on changes in the frequency and occurrence of frost 

days but also on the shift in plant phenology (Lamichhane, 

2021). 

Frosts are usually categorized as advective, radiative, or a 

combination of these two types. Advective (dynamic) frosts 

occur as a result of the intrusion of a large-scale cold air mass 

from polar regions and develop during the day or night. This 

type of frost is characterized by moderate to strong winds and 

turbulent atmosphere and can become a problem for agriculture 

in high latitude or high altitude areas. Radiative frosts occur at 

night and are caused by intense long-wave radiation cooling 

under calm, clear, and dry atmospheric conditions. Under these 

conditions, strong inversions develop in the stable atmosphere 

(Kalma et al., 1992). 

In another classification, frosts are categorized based on 

their time of occurrence into winter frosts, early autumn frosts 

(EAFs), and late spring frosts (LSFs). Winter frosts (such as the 

near-nationwide cold wave in the winter of 2008) at a certain 

temperature threshold can cause significant damage to fruit 

trees, especially citrus, pomegranates, and vineyards, to the 

point of complete destruction (Khalili, 2014). The study of 

early autumn and late spring frosts is important because many 

agricultural activities, including the cultivation of autumn 

wheat and barley, coincide with early autumn frosts, and the 

flowering of fruit trees coincides with late spring frosts 

(Aghashariatmadari et al., 2016). 

Late spring frosts have significant ecological and economic 

impacts on agriculture and forestry. Damage caused by late 

spring frosts to vulnerable plant organs significantly affects 

growth, health, interspecific competition, carbon sequestration, 

and plant distribution ranges (Lamichhane, 2021). The spring 

frost that occurred in April 2007 in the south-central and 

southeastern United States caused agricultural losses of 

approximately 1.6 billion euros (Marino et al., 2011). The 

economic losses caused by the April 2017 frost in Central and 

Western Europe were estimated at over 80 million euros for 

fruit crops in Switzerland and 3.3 billion euros for all affected 

European regions (Vitasse and Rebetez, 2018). In Iran, a large 

percentage of the compensation paid to farmers by the 

Agricultural Products Insurance Fund annually relates to frost 

and freezing damage. According to the statistics of the 

Comprehensive Agricultural Insurance System (SABKA, 

2023), feezing and frost are the second most damaging factors 

to insured agricultural products, after drought. West Azerbaijan 

province, with over 800,000 hectares of orchards and 

farmlands, is one of the successful provinces in agriculture, 

producing 6.8 million tons of various agricultural products 

annually, worth 33 trillion Tomans, with an added-value of 

17.8%. Due to the region's climate and the lack of necessary 

facilities for modern frost control methods for most farmers, it 

is threatened by freezing and frost damage every year. In the 

spring of 2023, the West Azerbaijan Agricultural Jihad 

Organization reported damage to about 30% of orchards due to 

frost, estimating spring frost damage to about 50,000 tons of 

products from 21,000 hectares of orchards in the province. 

One of the essential requirements for reducing frost damage 

is frost risk management. Also, the Agricultural Products 

Insurance Fund, which is legally responsible for implementing 

management policies in the agricultural sector, needs to 

quantify the risk of frost occurrence in different parts of the 

country to fairly assess frost risk and make data-driven 

decisions in insuring agricultural products against frost events 

(Khalili, 2014). The frequency and intensity of frosts, as well 

as the duration of the frost season, are among the most 

important factors determining the possibility of crop cultivation 

in an agricultural area. Long-term weather data can provide a 

good indicator of frost risk, i.e., the probability of a certain sub-

zero temperature occurring at a specific time. Therefore, frost 

risk maps are important tools for land use planning and farm 

and crop management in agriculture and horticulture. These 

maps are also essential for local interpretation or short-term 

frost forecasts at the regional scale and for frost control 

technologies (Kalma et al., 1992). 

The first attempts to study frost in Iran date back to the 

1970s. According to Khalili (2014), Hashemi (1974) studied 

the dates of occurrence of early autumn and late spring frosts 

with a scale accuracy of 1:16,000,000 for the network of 

synoptic stations in Iran, and prepared a map of the length of 

the growing season and active growth days based on statistics 

from 1961 to 1970. The second effort to study the occurrence 

of damaging frosts was Kamali (2001), in which the dates of 

crossing the first and last specific temperatures at probability 

levels of 25, 50, and 75 percent were examined, and 

isochronous lines were drawn based on linear interpolation with 

temperature estimation at multiple altitude points in the 

country. Also, Khalili (2009) aimed at zoning frost risk at 

different phenological stages of various crops, provided maps 

of the dates of occurrence of early autumn frost, late spring 

frost, and the duration of frost for various thresholds of 

damaging temperatures at different probability levels from 10 
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to 90 percent in a GIS environment with an accuracy of 1×1 

kilometer for the extent of Iran as a climatic atlas. 

Maps of meteorological components (e.g., minimum air 

temperature or the probability of frost occurrence) are generally 

based on a network of meteorological stations. However, 

especially in areas with complex topography, the density of the 

meteorological station network is rarely sufficient. Many of the 

techniques used by researchers to generate spatial distribution 

patterns of meteorological components are based on fitting 

multidimensional smooth spline functions and spatial analysis 

and interpolation methods, such as Kriging, Co-Kriging, and 

Inverse Distance Weighting. However, interpolation errors, 

depending on the temporal and spatial scale and the technique 

used, are generally between 1 and 3 degrees Celsius (Mostovoy 

et al., 2006). Hesari et al. (2015) analyzed the probabilistic 

occurrence of frost based on the minimum temperature 

statistics of 34 synoptic and evaporation measurement stations 

in West Azerbaijan province and prepared a map of the frost 

occurrence date at a 75 percent probability using Kriging, Co-

Kriging, and Inverse Distance Weighting methods. Considering 

the complex topography of the province, the insufficient 

density of stations, the concentration of stations at low 

altitudes, as well as the dependence of minimum temperature 

and frost intensity on other factors such as land use type, plant 

phenological development, soil moisture, distance from water 

bodies, daily solar radiation cycle, solar zenith angle, etc., the 

use of spatial interpolation methods is not sufficient to prepare 

frost risk maps. Therefore, the use of more accurate methods 

that consider a significant portion of the aforementioned factors 

is necessary in preparing more accurate temperature and frost 

risk maps. 

One of the methods for mapping frost-prone areas is the use 

of three-dimensional numerical models that simulate the 

surface microclimate of heterogeneous areas during radiative 

frost events and can be used to generate minimum air 

temperature maps. These models are based on solving the 

physical equations of energy balance for the soil surface and 

vegetation canopy and can consider the effects of soil and 

vegetation on latent and sensible heat fluxes, and consequently, 

on air temperature and ground surface temperature. 

Another method is a semi-empirical approach to assess 

spatial patterns of frost risk at a regional scale, considering 

meteorological data and land surface data. In the simplest case, 

a model can be a regression relationship between minimum air 

temperature and altitude. However, extrapolating temperature 

to altitude ranges outside the range of altitudes of the stations 

used for model calibration can carry significant risk. 

Additionally, Kalma et al. (1986) showed that near-surface air 

temperature is strongly dependent on land cover. Therefore, 

maps derived from empirical methods should only be used for 

land covers similar to those where the data were obtained and 

the model was calibrated. 

In recent years, remote sensing technology has been widely 

used in frost risk zoning and frost forecasting. Thermal 

radiation sensing in the 8-14 μm wavelength band, a range 

where radiation absorption by water vapor is minimal, can help 

assess land surface temperature (LST) by measuring radiation. 

Many researchers have presented methods for estimating air 

temperature using remote sensing data. Although LST and air 

temperature are strongly correlated, they differ in physical 

meaning, values, measurement techniques, and diurnal phase, 

and have different responses to atmospheric conditions (Jin and 

Dickinson, 2010). Mildrexler et al. (2011) showed that altitude, 

topography, and surface roughness are important in the 

relationship between LST and air temperature. Jin and 

Dickinson (2010) also demonstrated the importance of cloud 

cover, water vapor content, and vegetation cover on the land-

atmosphere system. A common method for estimating air 

temperature based on LST is to use statistical approaches based 

on univariate or multivariate regression techniques (e.g., 

Mostovoy et al., 2006; Jang et al., 2004). These methods are 

based on data measured at meteorological stations as predictor 

variables, and it is assumed that the measured dataset is a subset 

of the overall air temperature distribution and therefore 

contains information about the reality of the spatial distribution 

of air temperature in a large area. Therefore, the use of 

statistical methods based on predictors such as LST data from 

satellite remote sensing products and auxiliary data (e.g., 

altitude, distance from water bodies, latitude, longitude, etc.) 

can be considered an effective approach in estimating minimum 

air temperature and preparing gridded minimum temperature 

data for frost risk analysis. 

Benali et al. (2012) used a statistical method based on LST 

data and auxiliary data to estimate minimum temperature, 

maximum temperature, and mean air temperature over a 10-

year period. The efficiency index of the presented model was 

0.941 for mean air temperature and 0.871 and 0.919 for 

minimum and maximum temperatures, respectively, and could 

provide weekly temperature estimates at a 1 km spatial scale, 

accurately describing intra-annual and inter-annual temporal 

and spatial patterns of air temperature. A valuable study on 

estimating air temperature based on LST data in Iran is the 

study by Janatian et al. (2016), who presented an advanced 

statistical approach for estimating air temperature over a 5-year 

period in eastern Iran based on LST data and 11 auxiliary data, 

and showed that the presented model had a mean absolute error 

of 2.3 and 1.8 degrees Celsius at daily and weekly scales, 

respectively. 

So far, no study has been conducted on estimating air 

temperature based on remote sensing data in West Azerbaijan 

province, and frost risk analysis studies (such as Hesari et al., 

2015; Bazgir et al., 2016) have been based on limited station 

data. Given the large temporal and spatial variations in air 

temperature, the influence of various factors on air temperature, 
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and the importance of remote sensing data in terms of having 

suitable temporal and spatial resolutions, it is necessary to 

prepare gridded air temperature data with a suitable spatial 

scale for more accurate frost risk analysis. The main objective 

of this study is to analyze the risk of late spring frosts in West 

Azerbaijan province. In this regard, the sub-objectives of this 

study are as follows: 

1. To present a statistical model based on satellite remote 

sensing products to estimate minimum air temperature. 

2. To prepare gridded minimum air temperature data based 

on the developed model. 

3. To probabilistically analyze late spring frosts based on 

gridded minimum air temperature data and to present frost risk 

maps. 

 

2. Materials and Methods 

2.1.  Study Area 

The study area is the province of West Azerbaijan. West 

Azerbaijan province is located in northwestern Iran and is 

bordered by the Republic of Azerbaijan and Turkey to the 

north, Turkey and Iraq to the west, East Azerbaijan province 

and Zanjan province to the east, and Kurdistan province to the 

south. The area of the province is 37,059 square kilometers, 

making it the thirteenth largest province in the country and 

comprising 2.25% of the total area of the country. Figure 1 

shows the geographical location of West Azerbaijan province. 

 

 
Figure 1. Geographical location of West Azerbaijan province and the studied meteorological stations. The inset shows the location of West Azerbaijan province 

in the national and global contexts

 

2.2. Data 

 

The first phase of the study includes the preparation of 

minimum air temperature data from meteorological stations 

and land surface temperature (LST) data from satellite remote 

sensing products to complete the predictor and predictand 

datasets. Accordingly, the steps of the first phase are as follows: 

 1. Preparation of minimum air temperature data from 

meteorological stations: The meteorological stations in the 

West Azerbaijan province include 20 stations, and the 

minimum air temperature data of these stations were obtained 

from the administration  of Meteorology of West Azerbaijan 

Province. The location of the studied stations is shown in Figure 

1. Information such as altitude, latitude, and longitude will be 

used as predictor variables for minimum air temperature. 

2. Preparation of gridded altitude data: Since gridded altitude 

data are needed to prepare minimum air temperature maps, the 

global data of the SRTM (Shuttle Radar Topography Mission, 
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2013) digital elevation model with a spatial resolution of 30 

meters were applied. To check the accuracy of these data, the 

altitude of the cells corresponding to the coordinates of each 

station was extracted using ArcGIS software. Comparing the 

altitude of the stations with their corresponding values from 

SRTM data indicates their high correlation (r = 0.999). 

3. Calculation of solar zenith angle: Considering the 

relationship between temperature changes and the daily cycle 

of solar radiation, examining the solar zenith angle as another 

predictor variable of minimum air temperature is important. 

Based on latitude and altitude information of the stations, 

through coding in the MATLAB environment, the solar zenith 

angle was calculated daily for the statistical period of each 

station. Using the mentioned code and based on the altitude and 

latitude information of the SRTM grid cells, solar zenith angle 

maps for the studied statistical period can be prepared. 

4. Calculation of the distance of stations from water bodies: 

Considering that the weather conditions in an area can be 

affected by the distance from water bodies, the distance of each 

station from the coast of Lake Urmia was calculated using 

ArcGIS software. Similarly, the distance of each SRTM grid 

cell from the coast of Lake Urmia can also be calculated. 

5. Preparation of land surface temperature (LST) data from 

satellite remote sensing products: As another predictor variable 

of minimum air temperature, version 6.1 of the MOD11A1 land 

surface temperature (LST) product from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor on the 

Terra satellite is used. These data have a daily temporal scale 

and a spatial resolution of 1 km and are available for day and 

night for the statistical period of 24/2/2000 onwards. In the first 

step, through coding in the Google Earth Engine environment, 

the night LST values of the available statistical period were 

extracted for the cells corresponding to each of the synoptic 

stations, and based on the data quality control information in 

the MOD11A1 product metadata, data with high errors were 

removed.  

 

2.3. Development of the Minimum Temperature 

Estimation Model 

The second phase of the study involves data analysis, the 

development of a minimum temperature estimation model, and 

the preparation of gridded minimum air temperature data based 

on the developed model. For this purpose, the predictand data 

(minimum air temperature (Tmin) at the studied stations) and 

predictor data (including land surface temperature (LST) data, 

Julian day number (JD), solar zenith angle (Z), station altitude 

(ELV), station longitude (LON) and latitude (LAT), land slope 

at the station (SLP), land aspect at the station (ASP), and the 

station's distance from coast of Lake Urmia (D2C)) prepared in 

the first phase were integrated into series, and days with 

statistical gaps in minimum temperature or land surface 

temperature were removed. The relationship between 

temperature and day number follows the trigonometric 

relationship below: 

(1) F(JD)=cos[
2π(JD-JDpeak)

365
] 

Where JD is the Julian day number and JDpeak is the Julian 

day number corresponding to the warmest day of the year, 

which is considered here to be 218 (August 6th). Using 

equation (1), the function value for different values of the Julian 

day number (F(JD)) was calculated and used as a model input 

variable. Also, the minimum temperature is correlated to the 

cosine of the solar zenith angle (cos(Z)) and the sine of half the 

aspect (sin(ASP/2)). For land surface temperature and solar 

zenith angle, data from the previous day (t-1) were used to 

predict the minimum temperature on day t. First, to determine 

the variables that show a significant correlation with the 

minimum temperature, a cross-correlation matrix between the 

predictor and predictand variables was prepared. Then, 

regression analysis was performed in Minitab software using a 

stepwise method and with random division of the data into 

calibration and test data with a ratio of 70% and 30%. Finally, 

based on the statistical criteria of the coefficient of 

determination (R2), root mean square error (RMSE), and mean 

absolute error (MAE), the most suitable minimum temperature 

estimation model was selected. 

 

(2) R2 = (
∑ (XOBSi

-X̅OBS)(XMODELi
-X̅MODEL)n

i=1

√∑ (XOBSi
-X̅OBS)

2
(XMODELi

-X̅MODEL)
2n

i=1

)2 

(3) RMSE =  √
∑ (XMODELi

− XOBSi
)2n

i=1

n
 

(4) MAE =  
∑ |XMODELi

− XOBSi
|n

i=1

n
 

 

Where X̅ is the mean of variable X (minimum temperature) 

and the subscripts MODEL and OBS represent the modeled and 

observed values, respectively. After determining the selected 

model, simulated minimum temperature maps were prepared 

daily in the Google Earth Engine environment using the 

selected model for the statistical period of 2000-2023 with a 

spatial resolution of 1 kilometer and in .tif format. 
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2.4.  Analysis of Late Spring Frost Risk 

 

In the final phase of the study, using the daily minimum 

temperature maps for the months of March, April, May, and 

June for the statistical period of 2000-2023, the risk analysis of 

late spring frosts was performed. For this purpose, through 

coding in the MATLAB software environment, the minimum 

temperature maps in .tif format were called, and for each map 

pixel (with dimensions of 1 km × 1 km), the daily minimum 

temperature data for the months of March, April, May, and June 

for the statistical period of 2000-2023 were extracted, and for a 

specific temperature threshold for frost occurrence, the day 

number corresponding to the last late spring frost for each year 

was determined. Examining the obtained time series showed 

that the Generalized Extreme Value (GEV) probability 

distribution fits the time series well. Therefore, by fitting the 

GEV probability distribution to the time series of the day 

number of the last late spring frost, for each pixel, the three 

parameters related to the GEV distribution were estimated in 

the MATLAB software environment. In the next step, the fitted 

probability distributions for each pixel were used to calculate 

the cumulative probabilities (p) of the day numbers 

corresponding to March 1st to June 30th (day numbers 152 to 

273 with the origin of Mehr 1st [September 23rd]). The values 

of 1-p represent the risk of late spring frost occurrence on day 

d and thereafter. The MATLAB code was executed for different 

temperature thresholds of frost occurrence, including -10°C to 

+4.4°C with 0.1°C intervals (145 thresholds), and for each run, 

an Excel file containing the values of 1-p (risk) for day numbers 

152 to 273 for different pixels was generated. The 145 

generated Excel files were called in the Python programming 

environment, and using the commands of the Arcpy package, a 

shapefile was generated for each Excel file, whose descriptive 

information table contains the values of 1-p (frost occurrence 

risk) for day numbers 152 to 273 for different pixels at the 

corresponding temperature threshold. In the next step, another 

code named FrostRisk_code.py was written in the Python 

environment, which allows the user to generate a late spring 

frost risk map for a desired temperature threshold and day 

number by entering a desired temperature threshold (Tr) in the 

range of -10°C to +4.4°C and a desired day number (day). The 

generated map, named prob_Tr_day, is a raster layer with a 

spatial resolution of 1 km, and the value of each pixel represents 

the probability of late spring frost occurrence on a desired day 

for the frost occurrence temperature threshold (Tr). In addition, 

this code has the ability to generate the risk value point-wisely 

for any number of desired points as an Excel file. For this 

purpose, an input Excel file named point.xls containing the 

longitude and latitude of the points for which the risk value 

needs to be extracted should be prepared. The Python code calls 

this Excel file and, in addition to preparing the risk map, stores 

the late spring frost occurrence risk value for the desired points 

in an output Excel file named results_Tr_day.xls. Therefore, the 

output of the Python code is a raster layer and an Excel file that 

are stored in a folder named Outputs. 

Another important issue in late spring frost analysis is 

knowing on what day the late spring frost occurs for a given 

temperature threshold (Tr) and a given risk (1-p). For this 

purpose, based on the estimated parameters of the GEV 

distribution in the previous step, a code was written in the 

MATLAB software environment that calculates the day number 

corresponding to the respective probability for different 

probabilities (risks) of 5 to 95 percent (with 5 percent intervals) 

for each specific temperature threshold. This code was executed 

for different temperature thresholds of frost occurrence, 

including -10°C to +4.4°C with 0.1°C intervals (145 

thresholds), and for each run, an Excel file containing the day 

number of frost occurrence for risks of 5 percent to 95 percent 

for different pixels was generated. The 145 generated Excel 

files were called in the Python programming environment, and 

using the commands of the Arcpy package, a shapefile was 

generated for each Excel file, whose descriptive information 

table contains the day number for risks of 5 percent to 95 

percent for different pixels at the corresponding temperature 

threshold. In the next step, another code named 

FrostDay_code.py was written in the Python environment, 

which allows the user to generate a late spring frost occurrence 

day number map for a desired temperature threshold and risk 

percentage by entering a desired temperature threshold (Tr) in 

the range of -10°C to +4.4°C and a desired risk percentage 

(risk). The generated map, named dy_Tr_risk, is a raster layer 

with a spatial resolution of 1 km, and the value of each pixel 

represents the day number of late spring frost occurrence for 

the risk (risk) and frost occurrence temperature threshold (Tr). 

In addition, this code has the ability to generate the day number 

of frost occurrence point-wisely for any number of desired 

points as an Excel file. For this purpose, an input Excel file 

named point.xls containing the longitude and latitude of the 

points for which the day number of frost occurrence needs to 

be extracted should be prepared. The Python code calls this 

Excel file and, in addition to preparing the frost occurrence day 

number map, stores the late spring frost occurrence day number 

value for the desired points in an output Excel file named 

results_Tr_risk.xls. Therefore, the output of the Python code is 

a raster layer and an Excel file that are stored in a folder named 

Outputs. 
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3. Results and discussion 

3.1. Selection of the Minimum Temperature Estimation 

Model 

 

To determine the variables that show a significant 

correlation with the minimum temperature, a cross-correlation 

matrix between the predictor and predictand variables was 

prepared. Table (1) shows the cross-correlation matrix of the 

studied variables. 

 

Table 1. Cross-correlation matrix of the studied variables 

 Tmin LST cos(Z) F(JD) ELV LON LAT sin(ASP/2) SLP 

LST 0.949*         

cos(Z) 0.757* 0.782*        

F(JD) 0.854* 0.890* 0.655*       

ELV -0.132* -0.134* 0.010 -0.019*      

LON -0.010 0.050* 0.078* 0.023* 0.268*     

LAT -0.004 -0.039* -0.059* 0.013* -0.328* -0.780*    

sin(ASP/2) -0.063* -0.11* -0.051* -0.038* 0.062* -0.278* 0.373*   

SLP 0.070* -0.010 0.005 -0.010 0.421* 0.063* -0.213* -0.017*  

D2C -0.003* -0.027* 0.031* 0.026* 0.433* 0.255* 0.106* 0.126* 0.462* 

 

 

According to Table (1), the minimum temperature shows a 

positive and significant correlation (α=0.05) with LST. The 

variables F(JD) and cos(Z) are in the next positions in terms of 

correlation. The correlation of minimum temperature with 

altitude is negative and significant, but the minimum 

temperature does not show a significant correlation with 

longitude and latitude. Therefore, these two variables were not 

used in the model. The minimum temperature shows a weak 

positive and significant correlation with slope. Since steeper 

slopes receive less energy from the sun, it is expected that the 

correlation of temperature with slope would be negative. Since 

slope variations in the region are large and the existing stations 

cannot show a correct representation of slope variations and 

their relationship with temperature, the slope variable was not 

used in the regression analysis. Regarding aspect, it is expected 

that the relationship between temperature and sin(ASP/2) 

would be positive, but according to Table (1), the correlation is 

negative. Therefore, this variable was also not used in the 

regression analysis. Despite the weak correlation of minimum 

temperature with distance from water bodies, it was used in the 

regression analysis because of its significance. 

Regression analysis was performed in Minitab software 

using a stepwise method and with random division of the data 

into calibration and test data with a ratio of 70% and 30%. Table 

(2) shows the regression coefficients of different combinations 

of input variables in different regression models.

 

Table 2. Regression coefficients of different regression models 

n Model a b c d e f 

1 Tmin=a+b*LST 0.69 0.85 
    

2 Tmin=a+b*F(JDS) 6.05 10.89 
    

3 Tmin=a+b*LST+c*cos(Z) -0.60 0.82 1.981 
   

4 Tmin=a+b*LST+c*D2C 0.42 0.85 4.00E-06 
   

5 Tmin=a+b*LST+c*cos(Z)+d*F(JD) -0.50 0.78 2.257 0.684 
  

6 Tmin=a+b*LST+c*cos(Z)+d*D2C -0.76 0.83 1.845 4.00E-06 
  

7 Tmin=a+b*LST+c*cos(Z)+d*F(JD)+e*D2C -0.65 0.78 2.116 0.623 3.00E-06 
 

8 Tmin=a+b*LST+c*cos(Z)+d*F(JD)+e*ELV 0.34 0.76 2.590 0.817 -7.26E-04 
 

9 Tmin=a+b*LST+c*cos(Z)+d*F(JD)+e*ELV+f*D2C 0.66 0.76 2.570 0.802 -1.21E-03 6.00E-06 
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According to Table (2), the sign of the regression coefficient 

of the distance from water bodies (D2C) variable is positive, 

while according to Table (1), the correlation between minimum 

temperature and D2C is negative. Statistically, when the 

correlation coefficient and the regression coefficient of two 

variables have different signs, the relationship between these 

two variables is meaningless (Falk and Miller, 1992). This 

happens when the correlations, despite being significant, are 

very weak and close to zero. Therefore, models 4, 6, 7, and 9 

were discarded. The criteria for evaluating the performance of 

other models are shown in Table (3). 

 

Table 3. Criteria for evaluating regression models 

n Model R2 R2 (adj) Test R2 RMSE Test RMSE MAE Test MAE 

1 Tmin=a+b*LST 0.900 0.900 0.899 2.728 2.741 2.069 2.081 

2 Tmin=a+b*F(JDS) 0.729 0.729 0.730 4.501 4.477 3.532 3.524 

3 Tmin=a+b*LST+c*cos(Z) 0.901 0.901 0.899 2.720 2.733 2.066 2.080 

5 Tmin=a+b*LST+c*cos(Z)+d*F(JD) 0.902 0.902 0.900 2.712 2.722 2.071 2.082 

8 Tmin=a+b*LST+c*cos(Z)+d*F(JD)+e*ELV 0.902 0.902 0.900 2.708 2.720 2.069 2.083 

 

 

According to Table (3), model 2 has a significant performance 

difference compared to the other models. The best 

performance, with a slight difference from the other models, 

belongs to model 8. However, model 1, with fewer inputs and 

accuracy very close to model 8, was selected as the final model 

for estimating the minimum temperature for the statistical 

period of 2000 to 2023. Figure (2) shows the results of 

simulating the minimum temperature at the level of West 

Azerbaijan province, by applying model 1 to the gridded LST 

data, for example, on four dates in different seasons of 2022. 

 

 
Figure 2. Results of minimum temperature simulation using model 1 on four dates in different seasons of 2022 
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3.2. Analysis of Late Spring Frost Risk 

 

The analysis of spring frost risk can be performed in two ways 

using the FrostRisk_code.py and FrostDay_code.py codes. The 

FrostRisk_code.py code generates a frost occurrence risk map 

on a desired day and thereafter for a desired frost occurrence 

temperature threshold (Tr) and desired day number (day). 

Additionally, by entering longitude and latitude information of 

desired points in the input Excel file point.xls, it stores the frost 

occurrence risk values on day 'day' and thereafter for the 

threshold Tr for the desired points in an output Excel file named 

results_Tr_day.xls. The results of running the code for 

temperature thresholds of +4.4°C, 0°C, and -4.4°C on April 4th 

(185), April 21st (202), May 5th (216), and May 22nd (233) are 

shown in Figure (3). According to Figure (3), the probability of 

late spring frost occurrence decreases with increasing day 

number and decreasing temperature threshold. 

 

 

Figure 3. Frost occurrence risk maps for temperature thresholds of +4.4°C, 0°C, and -4.4°C on April 4th, April 21st, May 5th, and May 22nd. 

The FrostDay_code.py code generates a frost occurrence day 

number map for a desired risk for a desired frost occurrence 

temperature threshold (Tr) and desired risk percentage (risk). 

Additionally, by entering longitude and latitude information of 

desired points in the input Excel file point.xls, it stores the frost 

occurrence day number values for the given risk (risk) for the 

threshold Tr for the desired points in an output Excel file named 

results_Tr_risk.xls. The results of running the code for 

temperature thresholds of +4.4°C, 0°C, and -4.4°C and risks of 

5%, 25%, 50%, and 75% are shown in Figure (4). According to 

Figure (4), the day number of late spring frost occurrence 

decreases with increasing risk and decreasing temperature 

threshold. 
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The black pixels in Figure (4) represent points where, for the 

given temperature threshold and/or risk, frost does not occur on 

any day after day 150 (February 27th). 

 

 

Figure 4. Frost occurrence day number maps for temperature thresholds of +4.4°C, 0°C, and -4.4°C and risks of 5%, 25%, 50%, and 75%. 

 

4. Conclusions 

In this study, aimed at analyzing the risk of late spring frosts in 

West Azerbaijan province, a minimum air temperature 

estimation model was developed through statistical analysis of 

daily minimum air temperature data from 20 meteorological 

stations in West Azerbaijan province, as well as land surface 

temperature data from satellite remote sensing products and 

auxiliary data. In the next step, daily minimum temperature 

maps from this model for the months with the potential for 

spring frost occurrence in the statistical period of 2000-2023 

were used for analyzing late spring frost risk. The achievement 

of this study is the provision of a code for estimating the risk of 

frost occurrence for a given day number and a given 

temperature threshold for frost occurrence, as well as the 

provision of another code for estimating the day number 

corresponding to a given risk percentage and a given 

temperature threshold for frost occurrence. The late spring frost 

occurrence risk estimation code has the ability to run in 17,690 

different states (for different combinations of 145 temperature 

thresholds in the range of -10°C to +4.4°C with a step of 0.1°C 

and 122 day numbers from March 1st to June 30th) and can be 

used as a useful tool for analyzing frost risk for plants with 

different sensitivities. Also, the frost occurrence day number 

estimation code has the ability to run in 2,755 different states 

(for different combinations of 145 temperature thresholds in the 
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range of -10°C to +4.4°C with a step of 0.1°C and 19 risk 

percentages from 5% to 95% with a step of 5%) and can be used 

as a useful tool in determining the appropriate planting date for 

plants so that the sensitive stages of plant growth do not fall 

within the frost period. The maps obtained from running these 

codes can be used to determine the appropriate time and place 

for cultivating crops with different sensitivity thresholds to 

frost. 

The achievements of this study can be used as an important tool 

for determining the most suitable location and time for 

cultivating agricultural products in West Azerbaijan province, 

selecting appropriate frost protection methods in different areas 

of the province, frost management, and also assisting in hazard 

assessment and making more accurate decisions by agricultural 

product insurance funds to estimate frost damage. It is also 

suggested that the application of the methods used in this study 

be investigated in the analysis of early autumn frost risk. 
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